Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation
ACS Nano ( IF 15.8 ) Pub Date : 2017-05-16 00:00:00 , DOI: 10.1021/acsnano.7b00367 Junlong Yang 1, 2 , Yunsong Pang 1 , Weixin Huang 3, 4 , Scott K. Shaw 4 , Jarrod Schiffbauer 1 , Michelle Anne Pillers 4 , Xin Mu 1 , Shirui Luo 1 , Teng Zhang 1 , Yajiang Huang 2 , Guangxian Li 2 , Sylwia Ptasinska 3 , Marya Lieberman 4 , Tengfei Luo 1, 5
ACS Nano ( IF 15.8 ) Pub Date : 2017-05-16 00:00:00 , DOI: 10.1021/acsnano.7b00367 Junlong Yang 1, 2 , Yunsong Pang 1 , Weixin Huang 3, 4 , Scott K. Shaw 4 , Jarrod Schiffbauer 1 , Michelle Anne Pillers 4 , Xin Mu 1 , Shirui Luo 1 , Teng Zhang 1 , Yajiang Huang 2 , Guangxian Li 2 , Sylwia Ptasinska 3 , Marya Lieberman 4 , Tengfei Luo 1, 5
Affiliation
The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor–liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.
中文翻译:
功能化石墨烯可实现高效的太阳能热蒸汽产生
有效利用太阳能来实现液相到气相相变的能力对于诸如水处理和化学分馏之类的广泛应用具有重大的技术意义。在这里,我们证明了使用亲水基团官能化石墨烯可以大大提高太阳热蒸汽的产生效率。我们的结果表明,与化学还原的氧化石墨烯相比,经过特殊功能化的石墨烯可以在一个日光条件下将总的太阳能转化效率从38%提高到48%。我们的实验表明,这种改善是一种表面效应,主要归因于功能化石墨烯的亲水性,这归因于毛细管效应,从而影响了气液界面处的水弯月形轮廓。这将导致靠近三相接触线的水膜变薄,其中水表面温度较高,这是因为较薄的水膜的电阻较小,从而导致更有效的蒸发。这种将石墨烯官能化以使其更具亲水性的策略可以潜在地与现有的宏观热隔离策略集成,以进一步提高总体的太阳能到蒸汽转化效率。
更新日期:2017-05-19
中文翻译:
功能化石墨烯可实现高效的太阳能热蒸汽产生
有效利用太阳能来实现液相到气相相变的能力对于诸如水处理和化学分馏之类的广泛应用具有重大的技术意义。在这里,我们证明了使用亲水基团官能化石墨烯可以大大提高太阳热蒸汽的产生效率。我们的结果表明,与化学还原的氧化石墨烯相比,经过特殊功能化的石墨烯可以在一个日光条件下将总的太阳能转化效率从38%提高到48%。我们的实验表明,这种改善是一种表面效应,主要归因于功能化石墨烯的亲水性,这归因于毛细管效应,从而影响了气液界面处的水弯月形轮廓。这将导致靠近三相接触线的水膜变薄,其中水表面温度较高,这是因为较薄的水膜的电阻较小,从而导致更有效的蒸发。这种将石墨烯官能化以使其更具亲水性的策略可以潜在地与现有的宏观热隔离策略集成,以进一步提高总体的太阳能到蒸汽转化效率。