当前位置: X-MOL 学术J. Phys. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH2OO with HNO3 and Its Catalytic Conversion to OH and HCO
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2017-04-28 00:00:00 , DOI: 10.1021/acs.jpca.7b02196
P. Raghunath,Yuan-Pern Lee,M. C. Lin

The kinetics and mechanisms for the reaction of the Criegee intermediate CH2OO with HNO3 and the unimolecular decomposition of its reaction product CH2(O)NO3 are important in atmospheric chemistry. The potential-energy profile of the reactions predicted with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ method shows that the initial association yields a prereaction complex that isomerizes by H migration to yield excited intermediate nitrooxymethyl hydroperoxide NO3CH2OOH* with internal energy ∼44 kcal mol–1. A fragmentation of this excited intermediate produces CH2(O)NO3 + OH with its transition state located 5.0 kcal mol–1 below that of the reactants. Further decomposition of CH2(O)NO3 produces HCO + HNO3, forming a catalytic cycle for destruction of CH2OO by HNO3. The rate coefficients and product-branching ratios were calculated in the temperature range 250–700 K at pressure 20–760 Torr (N2) using the variational-transition-state and Rice–Ramsperger–Kassel–Marcus (RRKM) theories. The predicted total rate coefficient for reaction CH2OO + HNO3 at 295 K, 5.1 × 10–10 cm3 molecule–1 s–1, agrees satisfactorily with the experimental value, (5.4 ± 1.0) × 10–10 cm3 molecule–1 s–1. The predicted branching ratios at 295 K are 0.21 for the formation of NO3CH2OOH and 0.79 for CH2(O)NO3 + OH at a pressure of 40 Torr (N2), and 0.79 for the formation of NO3CH2OOH and 0.21 for CH2(O)NO3 + OH at 760 Torr (N2). This new catalytic conversion of CH2OO to HCO + OH by HNO3 might have significant impact on atmospheric chemistry.

中文翻译:

Criegee中间体CH 2 OO与HNO 3的反应及其催化转化为OH和HCO的计算化学动力学

Criegee中间体CH 2 OO与HNO 3的反应动力学及其机理以及反应产物CH 2(O)NO 3的单分子分解在大气化学中很重要。用CCSD(T)/ aug-cc-pVTZ // B3LYP / aug-cc-pVTZ方法预测的反应的势能图表明,初始缔合产生预反应复合物,该复合物通过H迁移而异构化,从而生成激发的中间体硝基氧甲基内部能量约为44 kcal mol –1的氢过氧化物NO 3 CH 2 OOH * 。该被激发的中间体的碎片产生CH 2(O)NO 3+ OH的过渡态比反应物低5.0 kcal mol –1。CH 2(O)NO 3的进一步分解产生HCO + HNO 3,形成催化循环以破坏HNO 3破坏CH 2 OO 。使用变迁过渡态和莱斯-拉姆斯伯格-卡塞尔-马库斯(RRKM)理论,在250-700 K的温度范围内,压力20-760托(N 2)下计算了速率系数和产物分支比。CH 2 OO + HNO 3在295 K,5.1×10 –10 cm 3分子–1 s时的预计总速率系数–1,与实验值令人满意,(5.4±1.0)×10 –10 cm 3分子–1 s –1。在40 Torr(N 2)的压力下,对于295 K的预测支化比对于NO 3 CH 2 OOH的形成为0.21,对于CH 2(O)NO 3 + OH为0.79,对于NO 3 CH的形成为0.79。CH 2(O)NO 3 + OH在760托(N 2)下为2 OOH和0.21 。HNO 3将CH 2 OO催化转化为HCO + OH的新方法 可能会对大气化学产生重大影响。
更新日期:2017-05-11
down
wechat
bug