当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-04-28 00:00:00 , DOI: 10.1021/acsami.7b04887 Chengchen Guo 1 , Jacob S. Jordan 1 , Jeffery L. Yarger 1 , Gregory P. Holland 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-04-28 00:00:00 , DOI: 10.1021/acsami.7b04887 Chengchen Guo 1 , Jacob S. Jordan 1 , Jeffery L. Yarger 1 , Gregory P. Holland 2
Affiliation
In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.
中文翻译:
高效气相二氧化硅纳米粒子的肽键形成:丙氨酸转化为丙氨酸酐。
在这项工作中,使用热分析和多种光谱技术,包括红外(IR),拉曼光谱和核磁共振(NMR)光谱,研究了吸附在气相二氧化硅纳米颗粒上的丙氨酸的热缩合。热分析表明,吸附的丙氨酸会发生热缩合,在短时间内在气相二氧化硅纳米颗粒表面上的温度(约170°C)下比在本体温度(约210°C)下形成肽键。光谱结果进一步表明,在热缩合过程中,丙氨酸转化为丙氨酸酐的产率为98.8%。比较溶液衍生的胶体二氧化硅纳米颗粒上的肽形成后,已经发现,气相法二氧化硅纳米颗粒在合成丙氨酸酐方面显示出比溶液来源的胶体二氧化硅纳米颗粒更好的效率和选择性。此外,拉曼光谱学提供了气相二氧化硅纳米颗粒的高效性可能与其独特的表面特征有关的证据:表面上固有的大量应变环结构。这项工作表明气相二氧化硅纳米颗粒在高效高效地合成多肽方面具有巨大潜力。
更新日期:2017-05-10
中文翻译:
高效气相二氧化硅纳米粒子的肽键形成:丙氨酸转化为丙氨酸酐。
在这项工作中,使用热分析和多种光谱技术,包括红外(IR),拉曼光谱和核磁共振(NMR)光谱,研究了吸附在气相二氧化硅纳米颗粒上的丙氨酸的热缩合。热分析表明,吸附的丙氨酸会发生热缩合,在短时间内在气相二氧化硅纳米颗粒表面上的温度(约170°C)下比在本体温度(约210°C)下形成肽键。光谱结果进一步表明,在热缩合过程中,丙氨酸转化为丙氨酸酐的产率为98.8%。比较溶液衍生的胶体二氧化硅纳米颗粒上的肽形成后,已经发现,气相法二氧化硅纳米颗粒在合成丙氨酸酐方面显示出比溶液来源的胶体二氧化硅纳米颗粒更好的效率和选择性。此外,拉曼光谱学提供了气相二氧化硅纳米颗粒的高效性可能与其独特的表面特征有关的证据:表面上固有的大量应变环结构。这项工作表明气相二氧化硅纳米颗粒在高效高效地合成多肽方面具有巨大潜力。