当前位置:
X-MOL 学术
›
J. Med. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis, biotransformation, and pharmacokinetic studies of 9-(beta-D-arabinofuranosyl)-6-azidopurine: a prodrug for ara-A designed to utilize the azide reduction pathway.
Journal of Medicinal Chemistry ( IF 6.8 ) Pub Date : 1996 Dec 20 , DOI: 10.1021/jm960339p Lakshmi P. Kotra 1 , Konstantine K. Manouilov 1 , Erica Cretton-Scott 1 , Jean-Pierre Sommadossi 1 , F. Douglas Boudinot 1 , Raymond F. Schinazi 1 , Chung K. Chu 1
Journal of Medicinal Chemistry ( IF 6.8 ) Pub Date : 1996 Dec 20 , DOI: 10.1021/jm960339p Lakshmi P. Kotra 1 , Konstantine K. Manouilov 1 , Erica Cretton-Scott 1 , Jean-Pierre Sommadossi 1 , F. Douglas Boudinot 1 , Raymond F. Schinazi 1 , Chung K. Chu 1
Affiliation
As a part of our efforts to design prodrugs for antiviral nucleosides, 9-(beta-D-arabinofuranosyl)-6-azidopurine (6-AAP) was synthesized as a prodrug for ara-A that utilizes the azide reduction biotransformation pathway. 6-AAP was synthesized from ara-A via its 6-chloro analogue 4. The bioconversion of the prodrug was investigated in vitro and in vivo, and the pharmacokinetic parameters were determined. For in vitro studies, 6-AAP was incubated in mouse serum and liver and brain homogenates. The half-lives of 6-AAP in serum and liver and brain homogenates were 3.73, 4.90, and 7.29 h, respectively. 6-AAP was metabolized primarily in the liver homogenate microsomal fraction by the reduction of the azido moiety to the amine, yielding ara-A. However, 6-AAP was found to be stable to adenosine deaminase in a separate in vitro study. The in vivo metabolism and disposition of ara-A and 6-AAP were conducted in mice. When 6-AAP was administered by either oral or intravenous route,the half-life of ara-A was 7-14 times higher than for ara-A administered intravenously. Ara-A could not be found in the brain after the intravenous administration of ara-A. However, after 6-AAP administration (by either oral or intravenous route), significant levels of ara-A were found in the brain. The results of this study demonstrate that 6-AAP is converted to ara-A, potentially increasing the half-life and the brain delivery of ara-A. Further studies to utilize the azide reduction approach on other clinically useful agents containing an amino group are in progress in our laboratories.
中文翻译:
9-(β-D-阿拉伯呋喃糖基)-6-叠氮嘌呤的合成,生物转化和药代动力学研究:ara-A的前体药物,设计用于利用叠氮化物还原途径。
作为我们设计抗病毒核苷前药的努力的一部分,合成了9-(β-D-阿拉伯呋喃糖基)-6-叠氮嘌呤(6-AAP)作为ara-A的前药,它利用了叠氮化物还原生物转化途径。通过其6-氯类似物4从ara-A合成6-AAP。在体外和体内研究了前药的生物转化,并确定了药代动力学参数。为了进行体外研究,将6-AAP在小鼠血清以及肝和脑匀浆中孵育。6-AAP在血清,肝和脑匀浆中的半衰期分别为3.73、4.90和7.29小时。通过将叠氮基部分还原为胺,6-AAP主要在肝脏匀浆微粒体部分代谢,产生ara-A。然而,在另一项体外研究中发现6-AAP对腺苷脱氨酶稳定。在小鼠中进行ara-A和6-AAP的体内代谢和处置。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。然而,在施用6-AAP(通过口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。但是,在施用6-AAP(口服或静脉内途径)后,大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。然而,在施用6-AAP(通过口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。服用6-AAP(口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。服用6-AAP(口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。
更新日期:2017-01-31
中文翻译:
9-(β-D-阿拉伯呋喃糖基)-6-叠氮嘌呤的合成,生物转化和药代动力学研究:ara-A的前体药物,设计用于利用叠氮化物还原途径。
作为我们设计抗病毒核苷前药的努力的一部分,合成了9-(β-D-阿拉伯呋喃糖基)-6-叠氮嘌呤(6-AAP)作为ara-A的前药,它利用了叠氮化物还原生物转化途径。通过其6-氯类似物4从ara-A合成6-AAP。在体外和体内研究了前药的生物转化,并确定了药代动力学参数。为了进行体外研究,将6-AAP在小鼠血清以及肝和脑匀浆中孵育。6-AAP在血清,肝和脑匀浆中的半衰期分别为3.73、4.90和7.29小时。通过将叠氮基部分还原为胺,6-AAP主要在肝脏匀浆微粒体部分代谢,产生ara-A。然而,在另一项体外研究中发现6-AAP对腺苷脱氨酶稳定。在小鼠中进行ara-A和6-AAP的体内代谢和处置。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。然而,在施用6-AAP(通过口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。但是,在施用6-AAP(口服或静脉内途径)后,大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。通过口服或静脉内途径施用6-AAP时,ara-A的半衰期比静脉内施用ara-A的半衰期高7-14倍。静脉内施用ara-A后,在大脑中未发现Ara-A。然而,在施用6-AAP(通过口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。服用6-AAP(口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。服用6-AAP(口服或静脉内途径)后,在大脑中发现了显着水平的ara-A。这项研究的结果表明,6-AAP被转化为ara-A,可能会延长ara-A的半衰期和其大脑的传递。在我们的实验室中,正在进行进一步研究以将叠氮化物还原方法用于其他含有氨基的临床有用药物。