当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Thermal Decomposition Properties of CL-20 through Space-Confining in Three-Dimensional Hierarchically Ordered Porous Carbon
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-03-17 00:00:00 , DOI: 10.1021/acsami.7b00287
Jin Chen 1 , Simin He 1 , Bing Huang 1 , Peng Wu 1 , Zhiqiang Qiao 1 , Jun Wang 1 , Liyuan Zhang 1 , Guangcheng Yang 1 , Hui Huang 1
Affiliation  

High energy and low signature properties are the future trend of solid propellant development. As a new and promising oxidizer, hexanitrohexaazaisowurtzitane (CL-20) is expected to replace the conventional oxidizer ammonium perchlorate to reach above goals. However, the high pressure exponent of CL-20 hinders its application in solid propellants so that the development of effective catalysts to improve the thermal decomposition properties of CL-20 still remains challenging. Here, 3D hierarchically ordered porous carbon (3D HOPC) is presented as a catalyst for the thermal decomposition of CL-20 via synthesizing a series of nanostructured CL-20/HOPC composites. In these nanocomposites, CL-20 is homogeneously space-confined into the 3D HOPC scaffold as nanocrystals 9.2–26.5 nm in diameter. The effect of the pore textural parameters and surface modification of 3D HOPC as well as CL-20 loading amount on the thermal decomposition of CL-20 is discussed. A significant improvement of the thermal decomposition properties of CL-20 is achieved with remarkable decrease in decomposition peak temperature (from 247.0 to 174.8 °C) and activation energy (from 165.5 to 115.3 kJ/mol). The exceptional performance of 3D HOPC could be attributed to its well-connected 3D hierarchically ordered porous structure, high surface area, and the confined CL-20 nanocrystals. This work clearly demonstrates that 3D HOPC is a superior catalyst for CL-20 thermal decomposition and opens new potential for further applications of CL-20 in solid propellants.

中文翻译:

三维层次有序多孔碳中空间限制的CL-20增强的热分解性能

高能量和低签名性能是固体推进剂发展的未来趋势。作为一种新的有前景的氧化剂,六硝基六氮杂异纤锌矿型结构烷烃(CL-20)有望取代常规的氧化剂高氯酸铵,以达到上述目标。但是,CL-20的高压指数阻碍了其在固体推进剂中的应用,因此开发有效的催化剂以改善CL-20的热分解性能仍然具有挑战性。在此,通过合成一系列纳米结构的CL-20 / HOPC复合材料,提出了3D层次有序的多孔碳(3D HOPC)作为CL-20热分解的催化剂。在这些纳米复合材料中,CL-20被均匀地限制在3D HOPC支架中,成为直径为9.2–26.5 nm的纳米晶体。讨论了孔隙结构参数和3D HOPC的表面改性以及CL-20的负载量对CL-20热分解的影响。通过显着降低分解峰温度(从247.0到174.8°C)和活化能(从165.5到115.3 kJ / mol),可以显着改善CL-20的热分解性能。3D HOPC的出色性能可归因于其良好连接的3D层次有序的多孔结构,高表面积和局限的CL-20纳米晶体。这项工作清楚地表明3D HOPC是CL-20热分解的优良催化剂,并为CL-20在固体推进剂中的进一步应用开辟了新的潜力。通过显着降低分解峰温度(从247.0到174.8°C)和活化能(从165.5到115.3 kJ / mol),可以显着改善CL-20的热分解性能。3D HOPC的出色性能可归因于其良好连接的3D层次有序的多孔结构,高表面积和局限的CL-20纳米晶体。这项工作清楚地表明3D HOPC是CL-20热分解的优良催化剂,并为CL-20在固体推进剂中的进一步应用开辟了新的潜力。通过显着降低分解峰温度(从247.0到174.8°C)和活化能(从165.5到115.3 kJ / mol),可以显着改善CL-20的热分解性能。3D HOPC的出色性能可归因于其良好连接的3D层次有序的多孔结构,高表面积和局限的CL-20纳米晶体。这项工作清楚地表明3D HOPC是CL-20热分解的优良催化剂,并为CL-20在固体推进剂中的进一步应用开辟了新的潜力。3D HOPC的出色性能可归因于其良好连接的3D层次有序的多孔结构,高表面积和局限的CL-20纳米晶体。这项工作清楚地表明3D HOPC是CL-20热分解的优良催化剂,并为CL-20在固体推进剂中的进一步应用开辟了新的潜力。3D HOPC的出色性能可归因于其良好连接的3D层次有序的多孔结构,高表面积和局限的CL-20纳米晶体。这项工作清楚地表明3D HOPC是CL-20热分解的优良催化剂,并为CL-20在固体推进剂中的进一步应用开辟了新的潜力。
更新日期:2017-03-17
down
wechat
bug