当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triphenylamine-Based Push–Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-03-22 00:00:00 , DOI: 10.1021/acs.jpcc.6b12068
Oleg V Kozlov 1, 2 , Xiaomeng Liu 1 , Yuriy N Luponosov 3 , Alexander N Solodukhin 3 , Victoria Y Toropynina 3 , Jie Min 4 , Mikhail I Buzin 3 , Svetlana M Peregudova 3 , Christoph J Brabec 4, 5 , Sergei A Ponomarenko 2, 3 , Maxim S Pshenichnikov 1
Affiliation  

Small push–pull molecules attract much attention as prospective donor materials for organic solar cells (OSCs). By chemical engineering, it is possible to combine a number of attractive properties such as broad absorption, efficient charge separation, and vacuum and solution processabilities in a single molecule. Here we report the synthesis and early time photophysics of such a molecule, TPA-2T-DCV-Me, based on the triphenylamine (TPA) donor core and dicyanovinyl (DCV) acceptor end group connected by a thiophene bridge. Using time-resolved photoinduced absorption and photoluminescence, we demonstrate that in blends with [70]PCBM the molecule works both as an electron donor and hole acceptor, thereby allowing for two independent channels of charge generation. The charge-generation process is followed by the recombination of interfacial charge transfer states that takes place on the subnanosecond time scale as revealed by time-resolved photoluminescence and nongeminate recombination as follows from the OSC performance. Our findings demonstrate the potential of TPA-DCV-based molecules as donor materials for both solution-processed and vacuum-deposited OSCs.

中文翻译:


用于光伏应用的基于三苯胺的推拉分子:从合成到超快器件光物理学



小推拉分子作为有机太阳能电池(OSC)的潜在供体材料而备受关注。通过化学工程,可以在单个分子中结合许多有吸引力的特性,例如广泛的吸收、有效的电荷分离以及真空和溶液加工性。在这里,我们报告了这种分子 TPA-2T-DCV-Me 的合成和早期光物理学,该分子基于通过噻吩桥连接的三苯胺(TPA)供体核心和二氰基乙烯基(DCV)受体端基。利用时间分辨光致吸收和光致发光,我们证明了在与[70]PCBM的混合物中,该分子既充当电子供体又充当空穴受体,从而允许两个独立的电荷生成通道。电荷产生过程之后是在亚纳秒时间尺度上发生的界面电荷转移态的重组,如时间分辨光致发光和 OSC 性能中的非成对重组所揭示的那样。我们的研究结果证明了基于 TPA-DCV 的分子作为溶液加工和真空沉积 OSC 供体材料的潜力。
更新日期:2017-03-22
down
wechat
bug