当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-03-06 00:00:00 , DOI: 10.1021/acsami.6b15018
Eugene N. Cho 1 , David Zhitomirsky 1 , Grace G. D. Han 1 , Yun Liu 1 , Jeffrey C. Grossman 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-03-06 00:00:00 , DOI: 10.1021/acsami.6b15018
Eugene N. Cho 1 , David Zhitomirsky 1 , Grace G. D. Han 1 , Yun Liu 1 , Jeffrey C. Grossman 1
Affiliation
![]() |
Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.
中文翻译:
分子工程化的偶氮苯衍生物,用于高能量密度固态太阳能热燃料
太阳能热燃料(STF)通过分子的构象变化在一个封闭的循环系统中收集和存储太阳能,并可以按需以热量的形式释放能量。为了开发适用于固态应用的可调和优化的STF,我们设计了三种被庞大的芳香族基团(苯基,联苯和叔丁基)官能化的偶氮苯衍生物。-丁基苯基)。与原始的偶氮苯结晶并形成不均匀的薄膜相反,庞大的偶氮苯衍生物形成了均匀的非晶薄膜,可以用光和热进行多次充电和放电。薄膜的热稳定性是热触发STF的关键指标,通过庞大的功能化(高达180°C)大大提高了薄膜的稳定性,对于固态STF,我们能够达到创纪录的135 J / g的高能量密度,与以前的固态报告相比,提高了30%以上。此外,固态的可充电性得到了改善,从以前的固态报告中的40%提升到80%。我们的研究结果表明分子工程是增加STF中能量存储,改善带电性和改善薄膜热稳定性的有效方法。
更新日期:2017-03-06
中文翻译:

分子工程化的偶氮苯衍生物,用于高能量密度固态太阳能热燃料
太阳能热燃料(STF)通过分子的构象变化在一个封闭的循环系统中收集和存储太阳能,并可以按需以热量的形式释放能量。为了开发适用于固态应用的可调和优化的STF,我们设计了三种被庞大的芳香族基团(苯基,联苯和叔丁基)官能化的偶氮苯衍生物。-丁基苯基)。与原始的偶氮苯结晶并形成不均匀的薄膜相反,庞大的偶氮苯衍生物形成了均匀的非晶薄膜,可以用光和热进行多次充电和放电。薄膜的热稳定性是热触发STF的关键指标,通过庞大的功能化(高达180°C)大大提高了薄膜的稳定性,对于固态STF,我们能够达到创纪录的135 J / g的高能量密度,与以前的固态报告相比,提高了30%以上。此外,固态的可充电性得到了改善,从以前的固态报告中的40%提升到80%。我们的研究结果表明分子工程是增加STF中能量存储,改善带电性和改善薄膜热稳定性的有效方法。