Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Programmable and coherent crystallization of semiconductors.
Science Advances ( IF 11.7 ) Pub Date : 2017-Mar-01 , DOI: 10.1126/sciadv.1602462
Liyang Yu 1 , Muhammad R. Niazi 1 , Guy O. Ngongang Ndjawa 1 , Ruipeng Li 2 , Ahmad R. Kirmani 1 , Rahim Munir 1 , Ahmed H. Balawi 1 , Frédéric Laquai 1 , Aram Amassian 1
Science Advances ( IF 11.7 ) Pub Date : 2017-Mar-01 , DOI: 10.1126/sciadv.1602462
Liyang Yu 1 , Muhammad R. Niazi 1 , Guy O. Ngongang Ndjawa 1 , Ruipeng Li 2 , Ahmad R. Kirmani 1 , Rahim Munir 1 , Ahmed H. Balawi 1 , Frédéric Laquai 1 , Aram Amassian 1
Affiliation
The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors.
中文翻译:
半导体的可编程和相干结晶。
多晶材料的功能特性和技术实用性在很大程度上取决于其众多晶体的结构,几何形状和空间分布。但是,结晶是通过随机和非相干成核事件而产生的,从而限制了控制或构图多晶材料的微观结构,织构和功能特性的能力。我们提出了一种通用的方法,该方法可以通过其他随机的均相成核事件的相干播种来编程材料的微观结构。该方法依赖于创建地形变化来在指定位置播种成核和生长,同时延迟其他地方的成核。因此,每个种子可以产生具有由种子的形状和排列指定的几何形状的连贯的结晶生长前沿。因此,可以通过对种子的位置和形状进行构图来按需且具有空前的复杂性和易用性来创建功能性材料(例如半导体)的周期性和非周期性的晶体阵列。由于对有机和无机多晶半导体的微观结构进行了空间控制,因此该方法用于演示具有出色性能和可重复性的有机薄膜晶体管印刷阵列。
更新日期:2017-03-26
中文翻译:
半导体的可编程和相干结晶。
多晶材料的功能特性和技术实用性在很大程度上取决于其众多晶体的结构,几何形状和空间分布。但是,结晶是通过随机和非相干成核事件而产生的,从而限制了控制或构图多晶材料的微观结构,织构和功能特性的能力。我们提出了一种通用的方法,该方法可以通过其他随机的均相成核事件的相干播种来编程材料的微观结构。该方法依赖于创建地形变化来在指定位置播种成核和生长,同时延迟其他地方的成核。因此,每个种子可以产生具有由种子的形状和排列指定的几何形状的连贯的结晶生长前沿。因此,可以通过对种子的位置和形状进行构图来按需且具有空前的复杂性和易用性来创建功能性材料(例如半导体)的周期性和非周期性的晶体阵列。由于对有机和无机多晶半导体的微观结构进行了空间控制,因此该方法用于演示具有出色性能和可重复性的有机薄膜晶体管印刷阵列。