当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO2 Nanostructures for High-Rate Electrochemical Energy Storage
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-02-08 00:00:00 , DOI: 10.1021/acsami.6b14612 Pan Xiong 1 , Renzhi Ma 1 , Nobuyuki Sakai 1 , Xueyin Bai 1 , Shen Li 2 , Takayoshi Sasaki 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-02-08 00:00:00 , DOI: 10.1021/acsami.6b14612 Pan Xiong 1 , Renzhi Ma 1 , Nobuyuki Sakai 1 , Xueyin Bai 1 , Shen Li 2 , Takayoshi Sasaki 1
Affiliation
Two-dimensional (2D) layered materials with a high intercalation pseudocapacitance have long been investigated for Li+-ion-based electrochemical energy storage. By contrast, the exploration of guest ions other than Li+ has been limited, although promising. The present study investigates intercalation/deintercalation behaviors of various metal ions in 2D layered MnO2 with various interlayer distances, K-birnessite nanobelt (K-MnO2), its protonated form (H-MnO2), and a freeze-dried sample of exfoliated nanosheets. Series of metal ions, such as monovalent Li+, Na+, and K+ and divalent Mg2+, exhibit reversible intercalation during charge/discharge cycling, delivering high-rate pseudocapacitances. In particular, the freeze-dried MnO2 of exfoliated nanosheets restacked with the largest interlayer spacing and a less compact 3D network exhibits the best rate capability and a stable cyclability over 5000 cycles. Both theoretical calculation and kinetic analysis reveal that the increased interlayer distance facilitates the fast diffusion of cations in layered MnO2 hosts. The results presented herein provide a basis for the controllable synthesis of layered nanostructures for high-rate electrochemical energy storage using various single- and multivalent ions.
中文翻译:
二维层状MnO 2纳米结构中的氧化还原活性阳离子插层/去插层,用于高速电化学储能
长期以来,人们一直在研究具有高插入拟电容的二维(2D)层状材料,用于基于Li +离子的电化学储能。相比之下,尽管有前途,但对Li +以外的客体离子的探索受到了限制。本研究研究了各种金属离子在具有不同层间距离的二维层状MnO 2中,K-水钠锰矿纳米带(K-MnO 2),其质子化形式(H-MnO 2)和冻干样品中的各种金属离子的嵌入/脱嵌行为。剥落的纳米片。金属离子系列,例如单价Li +,Na +和K +以及二价Mg 2+,在充电/放电循环中表现出可逆的插入,提供高速率的伪电容。特别地,以最大的层间间距和不太紧凑的3D网络重新堆叠的片状纳米片的冻干MnO 2表现出最好的速率能力和超过5000个循环的稳定循环能力。理论计算和动力学分析均表明,增加的层间距离有助于阳离子在层状MnO 2基质中快速扩散。本文介绍的结果为使用各种单价和多价离子可控合成层状纳米结构以实现高速率电化学能量存储提供了基础。
更新日期:2017-02-08
中文翻译:
二维层状MnO 2纳米结构中的氧化还原活性阳离子插层/去插层,用于高速电化学储能
长期以来,人们一直在研究具有高插入拟电容的二维(2D)层状材料,用于基于Li +离子的电化学储能。相比之下,尽管有前途,但对Li +以外的客体离子的探索受到了限制。本研究研究了各种金属离子在具有不同层间距离的二维层状MnO 2中,K-水钠锰矿纳米带(K-MnO 2),其质子化形式(H-MnO 2)和冻干样品中的各种金属离子的嵌入/脱嵌行为。剥落的纳米片。金属离子系列,例如单价Li +,Na +和K +以及二价Mg 2+,在充电/放电循环中表现出可逆的插入,提供高速率的伪电容。特别地,以最大的层间间距和不太紧凑的3D网络重新堆叠的片状纳米片的冻干MnO 2表现出最好的速率能力和超过5000个循环的稳定循环能力。理论计算和动力学分析均表明,增加的层间距离有助于阳离子在层状MnO 2基质中快速扩散。本文介绍的结果为使用各种单价和多价离子可控合成层状纳米结构以实现高速率电化学能量存储提供了基础。