Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier
ACS Nano ( IF 15.8 ) Pub Date : 2017-02-06 00:00:00 , DOI: 10.1021/acsnano.6b07865
Jemma L. Trick 1 , Chen Song 1 , E. Jayne Wallace 2 , Mark S. P. Sansom 1
ACS Nano ( IF 15.8 ) Pub Date : 2017-02-06 00:00:00 , DOI: 10.1021/acsnano.6b07865
Jemma L. Trick 1 , Chen Song 1 , E. Jayne Wallace 2 , Mark S. P. Sansom 1
Affiliation
![]() |
It is desirable that nanopores that are components of biosensors are gated, i.e., capable of controllable switching between closed (impermeable) and open (permeable) states. A central hydrophobic barrier within a nanopore may act as a voltage-dependent gate via electrowetting, i.e., changes in nanopore surface wettability by application of an electric field. We use “computational electrophysiology” simulations to demonstrate and characterize electrowetting of a biomimetic nanopore containing a hydrophobic gate. We show that a hydrophobic gate in a model β-barrel nanopore can be functionally opened by electrowetting at voltages that do not electroporate lipid bilayers. During the process of electrowetting, voltage-induced alignment of water dipoles occurs within the hydrophobic gate region of the nanopore, with water entry preceding permeation of ions through the opened nanopore. When the ionic imbalance that generates a transbilayer potential is dissipated, water is expelled from the hydrophobic gate and the nanopore recloses. The open nanopore formed by electrowetting of a “featureless” β-barrel is anionic selective due to the transmembrane dipole potential resulting from binding of Na+ ions to the headgroup regions of the surrounding lipid bilayer. Thus, hydrophobic barriers can provide voltage-dependent gates in designed biomimetic nanopores. This extends our understanding of hydrophobic gating in synthetic and biological nanopores, providing a framework for the design of functional nanopores with tailored gating functionality.
中文翻译:
仿生纳米孔的电压门控:疏水性屏障的电润湿
期望对作为生物传感器的组成部分的纳米孔进行门控,即。例如,能够在闭合(不可渗透)状态和打开(可渗透)状态之间进行可控的切换。纳米孔内的中央疏水性阻挡层可以通过电润湿(即,电润湿)充当依赖电压的栅极。Ë通过施加电场改变纳米孔表面的可湿性。我们使用“计算电生理学”模拟来演示和表征包含疏水门的仿生纳米孔的电润湿。我们显示出模型β-桶纳米孔中的疏水门可以在不电穿孔脂质双层的电压下通过电润湿功能性地打开。在电润湿过程中,水诱导的偶极子排列在纳米孔的疏水门区域内发生,水进入之前离子通过打开的纳米孔渗透。当产生跨双层电位的离子不平衡被消除时,水从疏水门中排出,纳米孔重新封闭。+离子到达周围脂质双层的头基区域。因此,疏水性屏障可以在设计的仿生纳米孔中提供电压依赖性的门。这扩展了我们对合成和生物纳米孔中疏水门控的理解,为具有定制门控功能的功能性纳米孔的设计提供了框架。
更新日期:2017-02-06
中文翻译:

仿生纳米孔的电压门控:疏水性屏障的电润湿
期望对作为生物传感器的组成部分的纳米孔进行门控,即。例如,能够在闭合(不可渗透)状态和打开(可渗透)状态之间进行可控的切换。纳米孔内的中央疏水性阻挡层可以通过电润湿(即,电润湿)充当依赖电压的栅极。Ë通过施加电场改变纳米孔表面的可湿性。我们使用“计算电生理学”模拟来演示和表征包含疏水门的仿生纳米孔的电润湿。我们显示出模型β-桶纳米孔中的疏水门可以在不电穿孔脂质双层的电压下通过电润湿功能性地打开。在电润湿过程中,水诱导的偶极子排列在纳米孔的疏水门区域内发生,水进入之前离子通过打开的纳米孔渗透。当产生跨双层电位的离子不平衡被消除时,水从疏水门中排出,纳米孔重新封闭。+离子到达周围脂质双层的头基区域。因此,疏水性屏障可以在设计的仿生纳米孔中提供电压依赖性的门。这扩展了我们对合成和生物纳米孔中疏水门控的理解,为具有定制门控功能的功能性纳米孔的设计提供了框架。