当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2017-01-26 20:58:46
Yuxiong Wang, Hao Wang, Fangyan Chen, Fu Cao, Xiaohua Zhao, Sugang Meng, Yanjuan Cui

Tailoring defective conjugated heterocyclic network to make for broaden light absorption and efficient charge separation for photocatalytic application is an urgent assignment for graphitic carbon nitride (g-C3N4) materials. Here we report a ficile “one-pot” solvothermal method to synthesize controllable O-doped g-C3N4 catalysts at low temperature. By this template-free approach, hollow microsphere O-doped g-C3N4 products were obtained. Structure characterization reveals that the as-prepared sample has incomplete heptazine heterocyclic ring structure, and appears O doping in the lattice, which may derived from the activated O2 molecular. With the extending condensation time, the increased heteroelement doping content and narrowed band gap promote the light harvesting and charge separation efficiency. Compared to pristine g-C3N4 prepared under high-temperature calcination, this novel material show remarkably photocatalytic activity for environment pollutant purification and splitting water for H2 evolution, even though the conduction level decrease. This work highlights that the architecture and electronic properties of g-C3N4 based materials could be facile control through mild solvothermal route, which is a reference way for design and fabricate highly efficient non-metal photocatalyst with peculiar feature.

中文翻译:

氧掺杂氮化碳空心微球的光催化合成

裁切有缺陷的共轭杂环网络以扩大光吸收范围和进行光催化应用的有效电荷分离是石墨氮化碳(gC 3 N 4)材料的紧迫任务。在这里,我们报告了一种简单的“一锅法”溶剂热方法,可在低温下合成可控制的O掺杂gC 3 N 4催化剂。通过这种无模板方法,获得了空心微球O掺杂的gC 3 N 4产物。结构表征表明,所制备的样品具有不完全的庚嗪杂环结构,并且在晶格中出现了O掺杂,这可能是由活化的O 2衍生而来的。分子。随着凝结时间的延长,增加的杂元素掺杂含量和变窄的带隙促进了光​​收集和电荷分离效率。与在高温煅烧下制备的原始gC 3 N 4相比,即使传导水平降低,该新型材料仍具有显着的光催化活性,可净化环境污染物并分解水以释放H 2。这项工作强调,可以通过温和的溶剂热途径轻松控制基于gC 3 N 4的材料的结构和电子性能,这是设计和制备具有特殊功能的高效非金属光催化剂的参考方法。
更新日期:2017-01-27
down
wechat
bug