当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-01-09 00:00:00 , DOI: 10.1021/acsami.6b13028 Chao Wang 1 , Fei Luo 2 , Hao Lu 1 , Xiaohui Rong 1 , Bonan Liu 1 , Geng Chu 1 , Yu Sun 1 , Baogang Quan 1 , Jieyun Zheng 1 , Junjie Li 1 , Changzhi Gu 1 , Xinping Qiu 2 , Hong Li 1 , Liquan Chen 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-01-09 00:00:00 , DOI: 10.1021/acsami.6b13028 Chao Wang 1 , Fei Luo 2 , Hao Lu 1 , Xiaohui Rong 1 , Bonan Liu 1 , Geng Chu 1 , Yu Sun 1 , Baogang Quan 1 , Jieyun Zheng 1 , Junjie Li 1 , Changzhi Gu 1 , Xinping Qiu 2 , Hong Li 1 , Liquan Chen 1
Affiliation
Nanotechnology and carbon coating have been applied to silicon anodes to achieve excellent lithium-ion batteries, but the exclusive influence of carbon coating on solid–electrolyte interphase (SEI) formation is difficult to exhibit distinctly because of the impurity and morphological irregularity of most nanostructured anodes. Here, we design a silicon nanocone–carbon (SNC-C) composite structure as a model anode to demonstrate the significant influences of carbon coating on SEI formation and electrochemical performance, unaffectedly as a result of pure electrode component and distinctly due to regular nanocone morphology. As demonstrated by morphological and elemental analysis, compared to the SNC electrode, the SNC-C electrode maintains a thinner SEI layer (∼10 nm) and more stable structure during cycling as well as longer cycle life (>725 cycles), higher Coulombic efficiency (>99%), and lower electrode polarization. This well-defined structure clearly shows the interface stability attributed to carbon coating and is promising in fundamental research of the silicon anode.
中文翻译:
定义明确的硅纳米锥-碳结构,证明碳涂层对锂离子电池硅阳极的排他性影响
纳米技术和碳涂层已应用于硅阳极,以获得优异的锂离子电池,但是由于大多数纳米结构阳极的杂质和形态不规则性,碳涂层对固体-电解质中间相(SEI)形成的排他性影响很难清楚地展现出来。 。在这里,我们设计了一种硅纳米锥-碳(SNC-C)复合结构作为模型阳极,以证明碳涂层对SEI形成和电化学性能的重大影响,这完全不受纯电极组件的影响,并且显然归因于规则的纳米锥形态。如形态和元素分析所示,与SNC电极相比,SNC-C电极在循环过程中保持更薄的SEI层(〜10 nm)和更稳定的结构以及更长的循环寿命(> 725个循环),更高的库仑效率(> 99%)和更低的电极极化。这种定义明确的结构清楚地显示了归因于碳涂层的界面稳定性,并且在硅阳极的基础研究中很有希望。
更新日期:2017-01-09
中文翻译:
定义明确的硅纳米锥-碳结构,证明碳涂层对锂离子电池硅阳极的排他性影响
纳米技术和碳涂层已应用于硅阳极,以获得优异的锂离子电池,但是由于大多数纳米结构阳极的杂质和形态不规则性,碳涂层对固体-电解质中间相(SEI)形成的排他性影响很难清楚地展现出来。 。在这里,我们设计了一种硅纳米锥-碳(SNC-C)复合结构作为模型阳极,以证明碳涂层对SEI形成和电化学性能的重大影响,这完全不受纯电极组件的影响,并且显然归因于规则的纳米锥形态。如形态和元素分析所示,与SNC电极相比,SNC-C电极在循环过程中保持更薄的SEI层(〜10 nm)和更稳定的结构以及更长的循环寿命(> 725个循环),更高的库仑效率(> 99%)和更低的电极极化。这种定义明确的结构清楚地显示了归因于碳涂层的界面稳定性,并且在硅阳极的基础研究中很有希望。