当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-01-13 07:56:04 , DOI: 10.1002/aenm.201602366 Donghyeop Shin 1, 2 , Bayrammurad Saparov 1, 2 , David B. Mitzi 1, 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-01-13 07:56:04 , DOI: 10.1002/aenm.201602366 Donghyeop Shin 1, 2 , Bayrammurad Saparov 1, 2 , David B. Mitzi 1, 2
Affiliation
Application of zinc-blende-related chalcogenide absorbers such as CdTe and Cu(In,Ga)Se2 (CIGSe) has enabled remarkable advancement in laboratory- and commercial-scale thin-film photovoltaic performance; however concerns remain regarding the toxicity (CdTe) and scarcity (CIGSe/CdTe) of the constituent elements. Recently, kesterite-based Cu2ZnSn(S,Se)4 (CZTSSe) materials have emerged as attractive non-toxic and earth-abundant absorber candidates. Despite the similarities between CZTSSe and CIGSe/CdTe, the record power conversion efficiency of CZTSSe solar cells (12.6%) remains significantly lower than that of CIGSe (22.6%) and CdTe (22.1%) devices, with the performance gap primarily being attributed to cationic disordering and associated band tailing. To capture the promise of kesterite-like materials as prospective “drop-in” earth-abundant replacements for closely-related CIGSe, current research has focused on several key directions to control disorder, including: (i) examination of the interaction between processing conditions and atomic site disorder, (ii) isoelectronic cation substitution to introduce ionic size mismatch, and (iii) structural diversification beyond the zinc-blende-type coordination environment. In this review, recent efforts targeting accurate identification and engineering of anti-site disorder in kesterite-based CZTSSe are considered. Lessons learned from CZTSSe are applied to other complex chalcogenide semiconductors, in an effort to develop promising pathways to avoid anti-site disordering and associated band tailing in future high-performance earth-abundant photovoltaic technologies.
中文翻译:
多元地球上富含硫族化物的光伏材料中的缺陷工程
诸如CdTe和Cu(In,Ga)Se 2(CIGSe)之类的与锌共混物相关的硫族化物吸收剂的应用使实验室和商业规模的薄膜光伏性能得到了显着提高。然而,人们仍然担心构成元素的毒性(CdTe)和稀缺性(CIGSe / CdTe)。近来,基于钙长石的Cu 2 ZnSn(S,Se)4(CZTSSe)材料已经成为有吸引力的无毒且富含地球的吸收剂候选材料。尽管CZTSSe和CIGSe / CdTe有相似之处,但CZTSSe太阳能电池的创纪录功率转换效率(12.6%)仍远低于CIGSe(22.6%)和CdTe(22.1%)器件,其性能差距主要归因于阳离子紊乱和相关的带拖尾。为了获得类似钾盐的材料作为密切相关的CIGSe的潜在“大量”替代地球的替代物的希望,当前的研究集中在控制疾病的几个关键方向,包括:(i)检查加工条件之间的相互作用和原子位错;(ii)等电阳离子取代以引入离子尺寸失配,(iii)超过锌-混合型协调环境的结构多样化。在这篇综述中,考虑了针对基于酯基CZTSSe的抗位点紊乱的准确鉴定和工程化的最新努力。从CZTSSe中学到的经验教训被应用于其他复杂的硫族化物半导体,以努力开发出有希望的途径,以免在未来的高性能地球上光伏技术中出现反位乱和相关的带拖尾效应。
更新日期:2017-01-14
中文翻译:
多元地球上富含硫族化物的光伏材料中的缺陷工程
诸如CdTe和Cu(In,Ga)Se 2(CIGSe)之类的与锌共混物相关的硫族化物吸收剂的应用使实验室和商业规模的薄膜光伏性能得到了显着提高。然而,人们仍然担心构成元素的毒性(CdTe)和稀缺性(CIGSe / CdTe)。近来,基于钙长石的Cu 2 ZnSn(S,Se)4(CZTSSe)材料已经成为有吸引力的无毒且富含地球的吸收剂候选材料。尽管CZTSSe和CIGSe / CdTe有相似之处,但CZTSSe太阳能电池的创纪录功率转换效率(12.6%)仍远低于CIGSe(22.6%)和CdTe(22.1%)器件,其性能差距主要归因于阳离子紊乱和相关的带拖尾。为了获得类似钾盐的材料作为密切相关的CIGSe的潜在“大量”替代地球的替代物的希望,当前的研究集中在控制疾病的几个关键方向,包括:(i)检查加工条件之间的相互作用和原子位错;(ii)等电阳离子取代以引入离子尺寸失配,(iii)超过锌-混合型协调环境的结构多样化。在这篇综述中,考虑了针对基于酯基CZTSSe的抗位点紊乱的准确鉴定和工程化的最新努力。从CZTSSe中学到的经验教训被应用于其他复杂的硫族化物半导体,以努力开发出有希望的途径,以免在未来的高性能地球上光伏技术中出现反位乱和相关的带拖尾效应。