当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water
Chemistry of Materials ( IF 7.2 ) Pub Date : 2015-07-01 00:00:00 , DOI: 10.1021/acs.chemmater.5b01991
Edoardo Mosconi 1 , Jon M. Azpiroz 1, 2 , Filippo De Angelis 1
Affiliation  

Protecting organohalide perovskite thin films from water and ambient humidity represents a paramount challenge for the commercial uptake of perovskite solar cells and, in general, of related optoelectronic devices. Therefore, understanding the perovskite/water interface is of crucial importance. As a step in this direction, here we present ab initio molecular dynamics simulations aimed at unraveling the atomistic details of the interaction between the methylammonium lead iodide (MAPbI3) perovskite surfaces and a liquid water environment. According to our calculations, MAI-terminated surfaces undergo a rapid solvation process, driven by the interaction of water molecules with Pb atoms, which prompts the release of I atoms. PbI2-terminated surfaces, instead, seem to be more robust to degradation, by virtue of the stronger (shorter) Pb–I bonds formed on these facets. We also observe the incorporation of a water molecule into the PbI2-terminated slab, which could represent the first step in the formation of an intermediate hydrated phase. Interestingly, PbI2 defects on the PbI2-terminated surface promote the rapid dissolution of the exposed facet. Surface hydration, which is spontaneous for both MAI- and PbI2-terminated slabs, does not modify the electronic landscape of the former, while the local band gap of the PbI2-exposing model widens by ∼0.3 eV in the interfacial region. Finally, we show that water incorporation into bulk MAPbI3 produces almost no changes in the tetragonal structure of the perovskite crystal (∼1% volume expansion) but slightly opens the band gap. We believe that this work, unraveling some of the atomistic details of the perovskite/water interface, may inspire new interfacial modifications and device architectures with increased stabilities, which could in turn assist the commercial uptake of perovskite solar cells and optoelectronic devices.

中文翻译:

甲基铵碘化铅钙钛矿被水降解的从头算分子动力学模拟

保护有机卤化物钙钛矿薄膜不受水和环境湿度的影响,对于钙钛矿太阳能电池以及通常的相关光电设备的商业应用而言,是一项极为重要的挑战。因此,了解钙钛矿/水界面至关重要。作为朝这个方向迈出的一步,我们在这里提供了从头开始的分子动力学模拟,旨在揭示甲基铵碘化铅(MAPbI 3)钙钛矿表面与液态水环境之间相互作用的原子细节。根据我们的计算,在水分子与Pb原子的相互作用的驱动下,MAI封端的表面经历了快速的溶剂化过程,促使I原子释放。铅2相反,由于在这些小面上形成的Pb-I键更强(更短),所以端接的表面似乎对降解更有抵抗力。我们还观察到将水分子掺入到PbI 2封端的平板中,这可能代表了形成中间水合相的第一步。有趣的是,PBI 2的碘化铅上的缺陷2封端的表面推动露出小面的快速溶解。对于MAI和PbI 2终止的平板来说,表面水合是自发的,不会改变前者的电子景观,而PbI 2暴露模型的局部带隙在界面区域扩大了〜0.3 eV。最后,我们表明水掺入到大块MAPbI中3在钙钛矿晶体的四方结构中几乎没有变化(〜1%的体积膨胀),但是稍微打开了带隙。我们认为,这项工作揭示了钙钛矿/水界面的一些原子学细节,可能会激发新的界面修饰和具有更高稳定性的器件架构,从而有助于钙钛矿太阳能电池和光电器件的商业应用。
更新日期:2015-07-01
down
wechat
bug