当前位置:
X-MOL 学术
›
J. Phys. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism of formation of biocidal imidazolidin-4-one derivatives: an Ab initio density-functional theory study.
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2006 Jun 22 , DOI: 10.1021/jp060879q Akin Akdag 1 , Michael L. McKee 1 , S. D. Worley 1
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2006 Jun 22 , DOI: 10.1021/jp060879q Akin Akdag 1 , Michael L. McKee 1 , S. D. Worley 1
Affiliation
N-halamine chemistry has been a research topic of considerable importance in these laboratories for over 2 decades because N-halamine compounds are very useful in preparing biocidal materials. To understand the utility of these compounds, the stabilities and mechanism of halogenation of cyclic N-halamine compounds should be resolved. The important precursor biocidal compound, 2,2,5,5-tetramethylimidazolidin-4-one (TMIO) was considered as a model in this theoretical study. The thermodynamic and kinetic products of monohalogenation were investigated along with tautomerization of TMIO and succinimide theoretically at the level of B3LYP/6-311+G(2d,p). Solvation effects (water and chloroform) were included using the CPCM solvation model with UAKS cavities. Several mechanisms have been proposed for the chlorine migration from the 3-position (kinetic product) to the 1-position (thermodynamic product) of the TMIO ring. The results are in agreement with experimental NMR data.
中文翻译:
杀微生物的咪唑烷基-4-酮衍生物的形成机理:从头算密度函数理论研究。
在过去的20多年中,N-卤胺化学一直是这些实验室中相当重要的研究课题,因为N-卤胺化合物在制备杀菌材料中非常有用。为了理解这些化合物的用途,应该解决环状N-卤胺化合物的卤化的稳定性和机理。在该理论研究中,重要的前体杀生物化合物2,2,5,5-四甲基咪唑啉丁-4-酮(TMIO)被视为模型。理论上在B3LYP / 6-311 + G(2d,p)的水平上研究了单卤代的热力学和动力学产物以及TMIO和琥珀酰亚胺的互变异构。使用具有UAKS腔的CPCM溶剂化模型,包括了溶剂化作用(水和氯仿)。已经提出了几种氯从TMIO环的3-位(运动产物)迁移至1-位(热力学产物)的机理。结果与实验NMR数据一致。
更新日期:2017-01-31
中文翻译:
杀微生物的咪唑烷基-4-酮衍生物的形成机理:从头算密度函数理论研究。
在过去的20多年中,N-卤胺化学一直是这些实验室中相当重要的研究课题,因为N-卤胺化合物在制备杀菌材料中非常有用。为了理解这些化合物的用途,应该解决环状N-卤胺化合物的卤化的稳定性和机理。在该理论研究中,重要的前体杀生物化合物2,2,5,5-四甲基咪唑啉丁-4-酮(TMIO)被视为模型。理论上在B3LYP / 6-311 + G(2d,p)的水平上研究了单卤代的热力学和动力学产物以及TMIO和琥珀酰亚胺的互变异构。使用具有UAKS腔的CPCM溶剂化模型,包括了溶剂化作用(水和氯仿)。已经提出了几种氯从TMIO环的3-位(运动产物)迁移至1-位(热力学产物)的机理。结果与实验NMR数据一致。