当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires
Nano Letters ( IF 9.6 ) Pub Date : 2016-12-23 00:00:00 , DOI: 10.1021/acs.nanolett.6b04189
Manuel Alonso-Orts 1 , Ana M. Sánchez 2 , Steven A. Hindmarsh 2 , Iñaki López 1 , Emilio Nogales 1 , Javier Piqueras 1 , Bianchi Méndez 1, 2
Affiliation  

Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO2/Ga2O3 complex nanostructures. Ga2O3 nanowires decorated with either crossing SnO2 nanowires or SnO2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga2O3 nanowires. Ga2O3 nanowires grown along the [001] direction favor the formation of crossing SnO2 nanowires. Alternatively, SnO2 forms rhombohedral particles on [110] Ga2O3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor–solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga2O3 acted as substrates, [110] Ga2O3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga2O3 axis and SnO2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga2O3 nanowires, growing along the [001], with crossing SnO2 wires. The SnO2/Ga2O3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO2 on its particular shape. Orange emission dominates in SnO2/Ga2O3 crossing wires while green-blue emission is observed in SnO2 particles attached to Ga2O3 trunks. The results show that the Ga2O3–SnO2 system appears to be a benchmark for shape engineering to get architectures involving nanowires via the control of the growth direction of the nanowires.

中文翻译:

SnO 2在掺杂的Ga 2 O 3纳米线上的选择性生长驱动的形状工程

定制复杂纳米结构的形状需要控制生长过程。在这项工作中,我们报告了纳米结构的氧化锡在氧化镓纳米线上的选择性生长,导致形成SnO 2 / Ga 2 O 3复合纳米结构。通过热蒸发的单步处理已经获得了用交叉的SnO 2纳米线或SnO 2颗粒装饰的Ga 2 O 3纳米线。这种双重行为的原因与主干Ga 2 O 3纳米线的生长方向有关。镓2 O 3沿着[001]方向生长的纳米线有利于交叉的SnO 2纳米线的形成。或者,SnO 2在[110] Ga 2 O 3纳米线上形成菱面体颗粒,从而形成串状结构。这些复杂的氧化物结构是通过无催化剂的气固过程生长的。当使用纯Ga和氧化锡作为原料,并且将Ga 2 O 3的压实粉末用作基材时,[110] Ga 2 O 3纳米线会优先生长。高分辨率透射电子显微镜分析揭示了Ga 2 O 3轴与SnO 2之间的外延关系晶格匹配颗粒,形成串状结构。向源材料中添加氧化铬会改变主干Ga 2 O 3纳米线的生长方向,该线沿着[001]生长,且与SnO 2线交叉。SnO 2 / Ga 2 O 3结不满足晶格匹配条件,形成晶界。XPS和CL已使用高空间分辨率对电子和光学特性进行了研究,这使我们能够在两种类型的结构中获取表面上的局部化学和电子信息。结果将允许根据取向局部地调节氧化物复合物纳米结构的光学和电子性质。特别是,我们报告了SnO 2的可见CL发射与其特定形状的相关性。在SnO 2 / Ga 2 O 3交叉导线中橙色发光占主导,而在附着于Ga 2 O 3的SnO 2颗粒中则观察到蓝绿色发光树干。结果表明,Ga 2 O 3 -SnO 2系统似乎是形状工程的基准,可以通过控制纳米线的生长方向来获得包含纳米线的体系结构。
更新日期:2016-12-23
down
wechat
bug