当前位置:
X-MOL 学术
›
Biomacromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Active Antibacterial and Antifouling Surface Coating via a Facile One-Step Enzymatic Cross-Linking
Biomacromolecules ( IF 5.5 ) Pub Date : 2016-12-22 00:00:00 , DOI: 10.1021/acs.biomac.6b01527 Changzhu Wu 1, 2 , Karin Schwibbert 3 , Katharina Achazi 1 , Petra Landsberger 3 , Anna Gorbushina 3 , Rainer Haag 1
Biomacromolecules ( IF 5.5 ) Pub Date : 2016-12-22 00:00:00 , DOI: 10.1021/acs.biomac.6b01527 Changzhu Wu 1, 2 , Karin Schwibbert 3 , Katharina Achazi 1 , Petra Landsberger 3 , Anna Gorbushina 3 , Rainer Haag 1
Affiliation
Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices.
中文翻译:
通过简便的一步式酶促交联进行主动抗菌和防污表面涂层
防止表面的微生物污染是生物医学应用的最大挑战之一。建立稳定,易于生产,高度抗菌的表面涂层可提供有效的解决方案,但仍存在技术难题。在这里,我们报告了一种在生理条件下通过酶促交联在玻璃表面上形成原位水凝胶膜涂层的新方法。在存在葡萄糖的情况下,辣根过氧化物酶(HRP)/葡萄糖氧化酶(GOD)偶联的级联反应可催化该交联反应,并导致3D树状聚甘油(dPG)支架与玻璃表面结合。这些支架不断释放H 2 O 2只要系统中存在葡萄糖即可。所得的聚合物涂层是高度稳定的,具有抗细菌性的,并且在生理条件下起作用。面对高细菌负荷(OD 540 = 1.0)的挑战,这种新颖的水凝胶和葡萄糖修饰涂层分别将恶臭假单胞菌(革兰氏阴性)和金黄色葡萄球菌(革兰氏阳性)的细胞活力降低了≥40%。 。此外,葡萄糖刺激的H 2 O 2的产生通过包被系统的杀菌足以在24小时内以> 99.99%的效率杀死两种测试细菌(低滴度)。在存在葡萄糖的情况下,该平台可产生对细菌粘附和存活具有高有效性的涂层,可以预见其可用于与葡萄糖相关的医疗/口腔设备中。
更新日期:2016-12-22
中文翻译:
通过简便的一步式酶促交联进行主动抗菌和防污表面涂层
防止表面的微生物污染是生物医学应用的最大挑战之一。建立稳定,易于生产,高度抗菌的表面涂层可提供有效的解决方案,但仍存在技术难题。在这里,我们报告了一种在生理条件下通过酶促交联在玻璃表面上形成原位水凝胶膜涂层的新方法。在存在葡萄糖的情况下,辣根过氧化物酶(HRP)/葡萄糖氧化酶(GOD)偶联的级联反应可催化该交联反应,并导致3D树状聚甘油(dPG)支架与玻璃表面结合。这些支架不断释放H 2 O 2只要系统中存在葡萄糖即可。所得的聚合物涂层是高度稳定的,具有抗细菌性的,并且在生理条件下起作用。面对高细菌负荷(OD 540 = 1.0)的挑战,这种新颖的水凝胶和葡萄糖修饰涂层分别将恶臭假单胞菌(革兰氏阴性)和金黄色葡萄球菌(革兰氏阳性)的细胞活力降低了≥40%。 。此外,葡萄糖刺激的H 2 O 2的产生通过包被系统的杀菌足以在24小时内以> 99.99%的效率杀死两种测试细菌(低滴度)。在存在葡萄糖的情况下,该平台可产生对细菌粘附和存活具有高有效性的涂层,可以预见其可用于与葡萄糖相关的医疗/口腔设备中。