当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2016-12-22 , DOI: 10.1002/aenm.201601424 Yi Zhao 1 , Luyuan Paul Wang 1, 2 , Moulay Tahar Sougrati 3 , Zhenxing Feng 4 , Yann Leconte 5 , Adrian Fisher 6 , Madhavi Srinivasan 1, 2 , Zhichuan Xu 1, 2, 7
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2016-12-22 , DOI: 10.1002/aenm.201601424 Yi Zhao 1 , Luyuan Paul Wang 1, 2 , Moulay Tahar Sougrati 3 , Zhenxing Feng 4 , Yann Leconte 5 , Adrian Fisher 6 , Madhavi Srinivasan 1, 2 , Zhichuan Xu 1, 2, 7
Affiliation
Carbon‐oxide and carbon‐sulfide nanocomposites have attracted tremendous interest as the anode materials for Li and Na ion batteries. Such composites are fascinating as they often show synergistic effect compared to their singular components. Carbon nanomaterials are often used as the matrix due to their high conductivity, tensile strength, and chemical stability under the battery condition. Metal oxides and sulfides are often used as active material fillers because of their large capacity. Numerous works have shown that by taking one step further into fabricating nanocomposites with rational structure design, much better performance can be achieved. The present review aims to present and discuss the development of carbon‐based nanocomposite anodes in both Li ion batteries and Na ion batteries. The authors introduce the individual components in the composites, i.e., carbon matrices (e.g., carbon nanotube, graphene) and metal oxides/sulfides; followed by evaluating how advanced nanostructures benefit from the synergistic effect when put together. Particular attention is placed on strategies employed in fabricating such composites, with examples such as yolk–shell structure, layered‐by‐layered structure, and composite comprising one or more carbon matrices. Lastly, the authors conclude by highlighting challenges that still persist and their perspective on how to further develop the technologies.
中文翻译:
高性能锂和钠离子电池阳极碳基金属氧化物和硫化物纳米复合材料的设计策略综述
作为Li和Na离子电池的负极材料,二氧化碳和硫化碳纳米复合材料引起了极大的兴趣。此类复合材料引人入胜,因为与它们的单一组分相比,它们通常表现出协同作用。碳纳米材料由于其在电池条件下的高电导率,抗张强度和化学稳定性而经常被用作基质。金属氧化物和硫化物由于其大容量而经常被用作活性材料填料。许多工作表明,通过进一步采取合理的结构设计来制造纳米复合材料,可以获得更好的性能。本综述旨在介绍和讨论锂离子电池和钠离子电池中碳基纳米复合阳极的开发。作者介绍了复合材料中的各个成分,即碳基体(例如碳纳米管,石墨烯)和金属氧化物/硫化物。其次是评估先进的纳米结构在组合在一起时如何从协同效应中受益。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。
更新日期:2016-12-22
中文翻译:
高性能锂和钠离子电池阳极碳基金属氧化物和硫化物纳米复合材料的设计策略综述
作为Li和Na离子电池的负极材料,二氧化碳和硫化碳纳米复合材料引起了极大的兴趣。此类复合材料引人入胜,因为与它们的单一组分相比,它们通常表现出协同作用。碳纳米材料由于其在电池条件下的高电导率,抗张强度和化学稳定性而经常被用作基质。金属氧化物和硫化物由于其大容量而经常被用作活性材料填料。许多工作表明,通过进一步采取合理的结构设计来制造纳米复合材料,可以获得更好的性能。本综述旨在介绍和讨论锂离子电池和钠离子电池中碳基纳米复合阳极的开发。作者介绍了复合材料中的各个成分,即碳基体(例如碳纳米管,石墨烯)和金属氧化物/硫化物。其次是评估先进的纳米结构在组合在一起时如何从协同效应中受益。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。特别注意的是用于制造此类复合材料的策略,例如蛋黄-壳结构,逐层结构以及包含一种或多种碳基质的复合材料。最后,作者通过强调仍然存在的挑战以及他们对如何进一步开发技术的观点作为总结。