当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing
Analytical Chemistry ( IF 6.7 ) Pub Date : 2016-12-15 00:00:00 , DOI: 10.1021/acs.analchem.6b02484
Xinhao Wang 1 , Te-Wei Chang 1 , Guohong Lin 1 , Manas Ranjan Gartia 2 , Gang Logan Liu 1, 3
Affiliation  

Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.

中文翻译:

自参考基于智能手机的纳米等离子体成像平台,用于比色生化传感

比色传感器通常会因光源强度,光源类型,拜耳滤波器算法以及相机对入射光的敏感度的变化而产生误差。在这里,我们演示了一个与内部参考样本集成在一起的基于自我参考的便携式智能手机的等离子传感平台,以及一种用于执行比色传感的图像处理方法。在此展示了用于比色生化传感的两种基于独特的纳米等离子体激元现象的传感原理,该现象来自纳米结构的等离子体传感器,称为nanoLCA(纳米Lycurgus杯阵列),用于液体比色生化传感:液体折射率传感和光吸收增强传感。无色液体的折射率通过简单的智能手机成像和颜色分析进行测量。通过将等离激元共振波长与发色团的吸收峰波长相匹配,可实现比色生化分析中的光吸收增强。这种检测机制以酶标仪的形式将检测下限(LoD)提高了100倍。与传统的比色测定(如尿液检测条)相比,智能手机等离激元增强的比色传感系统可将LoD提升30倍。该平台已用于模拟尿液测试,以精确鉴定具有较高蛋白质浓度的样品,这些样品显示了潜在的即时护理点,并通过智能手机等离子共振感应系统对肾脏疾病进行了早期检测。这种检测机制以酶标仪的形式将检测限(LoD)提高了100倍。与传统的比色测定(如尿液检测条)相比,智能手机等离激元增强的比色传感系统可将LoD提升30倍。该平台已用于模拟尿液测试,以精确鉴定具有较高蛋白质浓度的样品,这些样品显示了潜在的即时护理点,并通过智能手机等离子共振感应系统对肾脏疾病进行了早期检测。这种检测机制以酶标仪的形式将检测下限(LoD)提高了100倍。与传统的比色测定(如尿液检测条)相比,智能手机等离激元增强的比色传感系统可将LoD提升30倍。该平台已用于模拟尿液测试,以精确鉴定具有较高蛋白质浓度的样品,这些样品显示了潜在的即时护理点,并通过智能手机等离子共振感应系统对肾脏疾病进行了早期检测。
更新日期:2016-12-15
down
wechat
bug