当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of Nanoscale Heterogeneities on the Reactivity of Shocked Erythritol Tetranitrate
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2016-12-12 00:00:00 , DOI: 10.1021/acs.jpcc.6b11543 David Furman 1, 2 , Ronnie Kosloff 1 , Yehuda Zeiri 2, 3
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2016-12-12 00:00:00 , DOI: 10.1021/acs.jpcc.6b11543 David Furman 1, 2 , Ronnie Kosloff 1 , Yehuda Zeiri 2, 3
Affiliation
The mechanochemical effects of 5 nm spherical heterogeneities on the reactivity of shocked crystalline erythritol tetranitrate (ETN), an emerging improvised explosive, are revealed for the first time. Reactive molecular dynamics simulations in conjunction with the symmetric plate-impact technique, are employed to characterize different stages of the process, including shock–void interaction, void collapse, enhanced reactivity, and subsequent molecular decomposition. The formation of supersonic nanojets from the proximal void surface is observed to greatly enhance local heating following impact of the nanojets on the distant void surface. It is demonstrated that the nanovoid collapse closely matches a Rayleigh-type hydrodynamic bubble collapse, including a spherical-to-crescent shape transformation. The chemical decomposition mechanism of condensed phase ETN is analyzed and is shown to follow a unimolecular path. The molecular decomposition of a defect containing crystal occurs with significantly higher rates compared to the perfect crystal.
中文翻译:
纳米异质性对震惊的赤藓糖醇四反酸酯反应性的影响
首次揭示了5 nm球形异质性对新出现的简易爆炸物震荡结晶赤藓醇四硝酸酯(ETN)反应性的机械化学作用。反应性分子动力学模拟与对称板撞击技术相结合,用于表征过程的不同阶段,包括冲击-空洞相互作用,空洞塌陷,增强的反应性以及随后的分子分解。观察到由近端空隙表面形成的超音速纳米射流极大地增强了纳米射流撞击远处的空隙表面后的局部加热。结果表明,纳米空隙塌陷与瑞利型流体动力学气泡塌陷紧密匹配,包括球形到新月形的转变。分析了冷凝相ETN的化学分解机理,并表明它遵循单分子路径。与完美晶体相比,含有缺陷的晶体的分子分解发生率要高得多。
更新日期:2016-12-12
中文翻译:
纳米异质性对震惊的赤藓糖醇四反酸酯反应性的影响
首次揭示了5 nm球形异质性对新出现的简易爆炸物震荡结晶赤藓醇四硝酸酯(ETN)反应性的机械化学作用。反应性分子动力学模拟与对称板撞击技术相结合,用于表征过程的不同阶段,包括冲击-空洞相互作用,空洞塌陷,增强的反应性以及随后的分子分解。观察到由近端空隙表面形成的超音速纳米射流极大地增强了纳米射流撞击远处的空隙表面后的局部加热。结果表明,纳米空隙塌陷与瑞利型流体动力学气泡塌陷紧密匹配,包括球形到新月形的转变。分析了冷凝相ETN的化学分解机理,并表明它遵循单分子路径。与完美晶体相比,含有缺陷的晶体的分子分解发生率要高得多。