Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multifunctional Silicon Optoelectronics Integrated with Plasmonic Scattering Color
ACS Nano ( IF 15.8 ) Pub Date : 2016-12-06 00:00:00 , DOI: 10.1021/acsnano.6b05960 Long Wen 1 , Qin Chen 1 , Xin Hu 1 , Huacun Wang 1 , Lin Jin 1 , Qiang Su 1
ACS Nano ( IF 15.8 ) Pub Date : 2016-12-06 00:00:00 , DOI: 10.1021/acsnano.6b05960 Long Wen 1 , Qin Chen 1 , Xin Hu 1 , Huacun Wang 1 , Lin Jin 1 , Qiang Su 1
Affiliation
Plasmonic scattering from metallic nanoparticles has been used for centuries to create the colorful appearance of stained glass. Besides their use as passive spectral filtering components, multifunctional optoelectronic applications can be achieved by integrating the nanoscatters with semiconductors that generate electricity using the complementary spectral components of plasmonic colors. To suppress the usual degradation of both efficiency and the gamut of plasmonic scattering coloration in highly asymmetric index configurations like a silicon host, aluminum nanodisks on indium tin oxide (ITO) coated silicon were experimentally studied and demonstrated color sorting in the full visible range along with photocurrent generation. Interestingly, the photocurrents were found to be comparable to the reference devices with only antireflection coatings in spite of the power loss for coloration. Detailed investigation shows that ITO serves as both the impedance matching layer for promoting the backward scattering and schottky contact with silicon, and moreover, plasmonic nanoscatters efficiently harvest the complement spectrum components for charge generation. The present approach combines the capacities of nanoscale color sorting and photoelectric converting at a negligible cost of efficiency, thus providing a broad flexibility of being utilized in various optoelectronic applications including self-powered display, filter-free imaging, and colorful photovoltaics.
中文翻译:
集成了等离子散射色的多功能硅光电
来自金属纳米粒子的等离子散射已经使用了多个世纪,以创建彩色玻璃的彩色外观。除了将它们用作无源光谱滤波组件外,还可以通过将纳米散射体与使用等离激元颜色的互补光谱组件发电的半导体相集成来实现多功能光电应用。为了抑制效率高和等离子体散射散射色域在硅主体等高度不对称配置中的常规退化,对铟锡氧化物(ITO)涂层硅上的铝纳米盘进行了实验研究,并演示了在可见光范围内的颜色分类以及光电流产生。有趣的是,尽管着色功率损失,但发现光电流与仅具有抗反射涂层的参考器件相当。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。
更新日期:2016-12-06
中文翻译:
集成了等离子散射色的多功能硅光电
来自金属纳米粒子的等离子散射已经使用了多个世纪,以创建彩色玻璃的彩色外观。除了将它们用作无源光谱滤波组件外,还可以通过将纳米散射体与使用等离激元颜色的互补光谱组件发电的半导体相集成来实现多功能光电应用。为了抑制效率高和等离子体散射散射色域在硅主体等高度不对称配置中的常规退化,对铟锡氧化物(ITO)涂层硅上的铝纳米盘进行了实验研究,并演示了在可见光范围内的颜色分类以及光电流产生。有趣的是,尽管着色功率损失,但发现光电流与仅具有抗反射涂层的参考器件相当。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。详细的研究表明,ITO既可以用作阻抗匹配层,也可以促进与硅的向后散射和肖特基接触,而且,等离激元纳米散射体可以有效地收集互补谱成分以产生电荷。本方法以可忽略的效率成本结合了纳米级颜色分类和光电转换的能力,从而提供了广泛的灵活性,可用于各种光电应用中,包括自供电显示,无滤镜成像和彩色光电。