当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reactive simulation of an industrial‐scale FCC reaction‐regeneration full loop system
AIChE Journal ( IF 3.5 ) Pub Date : 2025-04-02 , DOI: 10.1002/aic.18845
Yuting Wu 1, 2 , Shikun Zhong 1, 2 , Bona Lu 1, 2 , Shanglin Liu 1, 2 , Youhao Xu 3 , Wei Wang 1, 2
Affiliation  

This study pioneers a three‐dimensional, transient reactive simulation of an industrial fluid catalytic cracking full‐loop system. Within a two‐fluid model framework, the simulation incorporates the Energy Minimization Multiscale (EMMS)‐based models to account for the effects of mesoscale flow structures on drag and heat transfer, and integrates a 12‐lumped kinetics model and a coke combustion model to describe catalytic cracking reactions and catalyst regeneration, respectively. It finds the significant impact of reactions on solid concentration and gas velocity distributions throughout the system, particularly in the first reaction zone. The first reaction zone achieves 80% conversion of feedstock oil, with the second reaction zone contributing an additional 19% conversion. These variations in product concentration along the bed height reflect substantial differences in reaction types under varying environments. Furthermore, the simulation captures temperature changes along the solid circulation path, facilitating the determination of the heat exchanger power required to control the reaction temperature.

中文翻译:


工业规模 FCC 反应再生全回路系统的反应仿真



本研究开创了工业流化催化裂化全回路系统的三维瞬态反应仿真。在双流体模型框架内,该仿真结合了基于能量最小化多尺度 (EMMS) 的模型,以解释中尺度流动结构对阻力和传热的影响,并集成了 12 个集总动力学模型和焦炭燃烧模型,分别描述催化裂化反应和催化剂再生。它发现反应对整个系统中的固体浓度和气体速度分布有显著影响,尤其是在第一反应区。第一个反应区实现了 80% 的原料油转化率,第二个反应区额外贡献了 19% 的转化率。产物浓度沿柱床高度的这些变化反映了不同环境下反应类型的巨大差异。此外,仿真还捕获了固体循环路径上的温度变化,有助于确定控制反应温度所需的换热器功率。
更新日期:2025-04-02
down
wechat
bug