Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2025-03-23 , DOI: 10.1007/s10878-025-01280-9
Minqin Liu , Wei Yu , Zhaohui Liu , Xinmeng Guo
In this paper, we investigate the data mule scheduling with handling time and time span constraints (DMSTC) in which the goal is to minimize the number of data mules dispatched from a depot that are used to serve target sensors located on a wireless sensor network. Each target sensor is associated with a handling time and each dispatched data mule must return to the original depot before time span \(D\). We also study a variant of the DMSTC, denoted by DMSTC\(_l\) in which the objective is to minimize the total travel distance of the data mules dispatched. We give exact and approximation algorithms for the DMSTC/DMSTC\(_l\) on a path and their multi-depot version. For the DMSTC, we show an \(O(n^4)\) polynomial time algorithm for the uniform 2-depot DMSTC on a path with at least one depot being on the endpoint of the path, where \(n\) indicates the number of target sensors and an instance of the DMSTC is called uniform if all the handling times are identical. We present a new 2-approximation algorithm for the non-uniform DMSTC on a path and conduct extensive computational experiments on randomly generated instances to show its good practical performance. For the DMSTC\(_l\), we derive an \(O((n+k)^{2})\)-time algorithm for the uniform multi-depot DMSTC\(_l\) on a path, where \(k\) is the number of depots. For the non-uniform multi-depot DMSTC\(_l\) on a path or cycle, we give a 2-approximation algorithm.
中文翻译:

具有处理时间和时间跨度约束的多仓库数据 mule 调度的精确和近似算法
在本文中,我们研究了具有处理时间和时间跨度约束 (DMSTC) 的数据骡调度,其中目标是最大限度地减少从仓库调度的数据骡的数量,这些数据骡用于为位于无线传感器网络上的目标传感器提供服务。每个目标传感器都与一个处理时间相关联,每个调度的数据 mule 必须在时间跨度 \(D\) 之前返回原始仓库。我们还研究了 DMSTC 的一种变体,以 DMSTC\(_l\) 表示,其目标是最小化调度的数据骡子的总旅行距离。我们给出了路径上的 DMSTC/DMSTC\(_l\) 及其多仓库版本的精确和近似算法。对于 DMSTC,我们展示了一个 \(O(n^4)\) 多项式时间算法,用于一条路径上只有一个站点位于路径端点上的统一 2 个站点 DMSTC,其中 \(n\) 表示目标传感器的数量,如果所有处理时间相同,则称为 DMSTC 的实例。针对路径上的非均匀 DMSTC,提出了一种新的 2 近似算法,并对随机生成的实例进行了广泛的计算实验,以证明其良好的实际性能。对于 DMSTC\(_l\),我们为路径上的均匀多站点 DMSTC\(_l\) 推导出一个 \(O((n+k)^{2})\) 时间算法,其中 \(k\) 是站点的数量。对于路径或循环上的非均匀多仓库 DMSTC\(_l\),我们给出了 2 近似算法。