当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Stitching in Polysaccharide Precursor for Fabricating Hard Carbon with Ultra‐High Plateau Capacity of Sodium Storage
Advanced Materials ( IF 27.4 ) Pub Date : 2025-03-25 , DOI: 10.1002/adma.202420251
Zhenzhuang Wen 1 , Ruiguang Zhao 1 , Tongtong Tian 1 , Tao Zhang 1 , Xin Wang 1 , Xinyi Yang 1 , Wanqing Song 1 , Yanan Chen 1, 2, 3 , Jia Ding 1, 2, 3 , Wenbin Hu 1, 2, 3
Affiliation  

High energy density of sodium‐ion batteries (SIBs) requires high low‐voltage capacity and initial Coulombic efficiency for hard carbon. However, simultaneously achieving both characteristics is a substantial challenge. Herein, a unique molecular stitching strategy is proposed to edit the polymeric structure of common starch for synthesizing cost‐effective hard carbon (STHC‐MS). A mild air‐heating treatment toward starch is employed to trigger the esterification reaction between carboxyl and hydroxy groups, which can effectively connect the branched polysaccharide chains thereby constructing a highly cross‐linked polymeric network. In contrast with the pristine branched‐chain starch, the cross‐linking structured precursor evolves into highly twisted graphitic lattices creating a large population of closed ultramicro‐pores (<0.3 nm) enabling the storage of massive sodium clusters. Resultantly, STHC‐MS delivers a reversible capacity of 348 mAh g−1 with a remarkable low‐voltage (below 0.1 V) capacity of 294 mAh g−1, which becomes more attractive by combining the high initial Coulombic efficiency of 93.3%. Moreover, STHC‐MS exhibits outstanding stability of 0.008% decay per cycle over 4800 cycles at 1 A g−1. STHC‐MS||Na3V2(PO3)4 full cells achieve an energy density of 266 Wh kg−1, largely surpassing the commercial hard carbon‐based counterpart. This work opens the avenue of molecular‐level modulation in organic precursors for developing high‐performance hard carbon in SIBs.

中文翻译:


多糖前驱体中的分子拼接用于制备具有超高钠储存能力的硬碳



钠离子电池 (SIB) 的高能量密度需要高低压容量和硬碳的初始库仑效率。然而,同时实现这两个特性是一项巨大的挑战。在此,提出了一种独特的分子拼接策略来编辑常见淀粉的聚合物结构,以合成具有成本效益的硬碳 (STHC-MS)。对淀粉采用温和的空气加热处理来触发羧基和羟基之间的酯化反应,这可以有效地连接支链多糖链,从而构建高度交联的聚合物网络。与原始支链淀粉相比,交联结构前驱体演变成高度扭曲的石墨晶格,形成大量封闭的超微孔 (<0.3 nm),从而能够储存大量的钠簇。因此,STHC-MS 可提供 348 mAh g-1 的可逆容量和 294 mAh g-1 的显著低电压(低于 0.1 V)容量,结合 93.3% 的高初始库仑效率,它变得更加有吸引力。此外,STHC-MS 在 1 A g-1 下,在 4800 次循环中表现出每个循环 0.008% 衰减的出色稳定性。STHC-MS ||Na3V2(PO3)4 全电池的能量密度为 266 Wh kg-1,大大超过了商业硬碳基电池。这项工作为在 SIB 中开发高性能硬碳开辟了有机前驱体分子水平调制的途径。
更新日期:2025-03-25
down
wechat
bug