当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metalized Porphyrin‐Based COFs for Conductive Porous Layers in Perovskite Solar Cells to Enhance Electron Injection, Defect Passivation and Lead‐Protection
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2025-03-24 , DOI: 10.1002/anie.202505470
Zhengyan He 1 , Tianxiang Luan 1 , Qilin Wei 1 , Liang Wang 2 , Dan Huang 3 , Haibo Chen 4 , Ivan Yu Dmitriev 5 , Peizhou Li 1 , Shufang Zhang 6 , William W Yu 7
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2025-03-24 , DOI: 10.1002/anie.202505470
Zhengyan He 1 , Tianxiang Luan 1 , Qilin Wei 1 , Liang Wang 2 , Dan Huang 3 , Haibo Chen 4 , Ivan Yu Dmitriev 5 , Peizhou Li 1 , Shufang Zhang 6 , William W Yu 7
Affiliation
In perovskite solar cells (PSCs), the introduction of an intermediate layer to bridge the transport and photoactive layers has become a key strategy for enhancing carrier extraction efficiency. However, traditional approaches are often limited by the seesaw effect, making it challenging to achieve an optimal balance between electron transport and defect passivation. In this study, we employed a Cu2+‐loaded metalized porphyrin‐based covalent organic framework (Cu‐Por‐COF) as a conductive porous layer (CPL) at the perovskite bottom interface. Experimental results showed that a Cu‐Por‐COF coverage of 19% significantly enhanced electron transport and effectively suppressed long‐distance electron diffusion. Moreover, the carefully designed Cu‐Por‐COF provided abundant active sites, which improved the film‐forming quality of the perovskite layer, thereby facilitating the beneficial synergy of electron injection and defect passivation. The n‐i‐p type devices achieved a power conversion efficiency (PCE) of 25.41% (0.09 cm2) and 21.99% (1.01 cm2). Using Cu‐Por‐COF to stabilize the perovskite crystal structure, the unencapsulated devices retained over 83% of its initial efficiency after 2000 hours. Additionally, Cu‐Por‐COF effectively chelated lead ions and thus enhanced the environmental sustainability of PSCs.
中文翻译:
基于金属化卟啉的 COFs 用于钙钛矿太阳能电池中的导电多孔层,以增强电子注入、缺陷钝化和铅保护
在钙钛矿太阳能电池 (PSC) 中,引入中间层来桥接传输层和光活性层已成为提高载流子提取效率的关键策略。然而,传统方法通常受到跷跷板效应的限制,这使得在电子传输和缺陷钝化之间实现最佳平衡变得具有挑战性。在这项研究中,我们采用了负载 Cu2+ 的金属化卟啉基共价有机框架 (Cu-Por-COF) 作为钙钛矿底部界面的导电多孔层 (CPL)。实验结果表明,19% 的 Cu-Por-COF 覆盖率显着增强了电子传输并有效抑制了长距离电子扩散。此外,精心设计的 Cu-Por-COF 提供了丰富的活性位点,提高了钙钛矿层的成膜质量,从而促进了电子注入和缺陷钝化的有益协同作用。n-i-p 型器件实现了 25.41% (0.09 cm2) 和 21.99% (1.01 cm2) 的功率转换效率 (PCE)。使用 Cu-Por-COF 来稳定钙钛矿晶体结构,未封装的器件在 2000 小时后仍保持了 83% 以上的初始效率。此外,Cu-Por-COF 有效地螯合了铅离子,从而提高了 PSC 的环境可持续性。
更新日期:2025-03-24
中文翻译:

基于金属化卟啉的 COFs 用于钙钛矿太阳能电池中的导电多孔层,以增强电子注入、缺陷钝化和铅保护
在钙钛矿太阳能电池 (PSC) 中,引入中间层来桥接传输层和光活性层已成为提高载流子提取效率的关键策略。然而,传统方法通常受到跷跷板效应的限制,这使得在电子传输和缺陷钝化之间实现最佳平衡变得具有挑战性。在这项研究中,我们采用了负载 Cu2+ 的金属化卟啉基共价有机框架 (Cu-Por-COF) 作为钙钛矿底部界面的导电多孔层 (CPL)。实验结果表明,19% 的 Cu-Por-COF 覆盖率显着增强了电子传输并有效抑制了长距离电子扩散。此外,精心设计的 Cu-Por-COF 提供了丰富的活性位点,提高了钙钛矿层的成膜质量,从而促进了电子注入和缺陷钝化的有益协同作用。n-i-p 型器件实现了 25.41% (0.09 cm2) 和 21.99% (1.01 cm2) 的功率转换效率 (PCE)。使用 Cu-Por-COF 来稳定钙钛矿晶体结构,未封装的器件在 2000 小时后仍保持了 83% 以上的初始效率。此外,Cu-Por-COF 有效地螯合了铅离子,从而提高了 PSC 的环境可持续性。