Nature Physics ( IF 17.6 ) Pub Date : 2025-03-24 , DOI: 10.1038/s41567-025-02807-x
Jinghui Liu, Tom Burkart, Alexander Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan, S. Zachary Swartz, Erwin Frey, Nikta Fakhri
|
Chemo-mechanical waves play a key role in force generation and long-range signal transmission in cells that dynamically change shape, for example, during cell division or morphogenesis. Reconstituting and controlling such chemically controlled cell deformations is a crucial but unsolved challenge for the development of synthetic cells. Here we present an optogenetic method to investigate the mechanism responsible for coordinating surface contraction waves that occur in oocytes of the starfish Patiria miniata during meiotic cell division. Using optogenetic stimuli, we create chemo-mechanical cortical excitations that are decoupled from meiotic cues and drive various shape deformations, ranging from local pinching to surface contraction waves and breakdown of the cell. A quantitative model entailing both chemical and geometry dynamics allows us to predict and explain the variety of mechanical responses to optogenetic stimuli. Finally, we qualitatively map the observed shape dynamics to understand how the versatility of intracellular protein dynamics can give rise to a broad range of mechanical phenotypes. More broadly, our results suggest a route towards real-time control over dynamical deformations in living organisms and can advance the design of synthetic cells and life-like cellular functions.
中文翻译:

光诱导的皮质兴奋性揭示了海星卵母细胞的可编程形状动力学
化学机械波在动态改变形状的细胞中产生力和远程信号传输中起着关键作用,例如,在细胞分裂或形态发生期间。重构和控制这种化学控制的细胞变形是合成细胞开发的关键但尚未解决的挑战。在这里,我们提出了一种光遗传学方法来研究在减数分裂细胞分裂过程中负责协调海星 Patiria miniata 卵母细胞中发生的表面收缩波的机制。使用光遗传学刺激,我们产生化学机械皮质兴奋,这些激发与减数分裂线索解耦并驱动各种形状变形,从局部挤压到表面收缩波和细胞分解。包含化学和几何动力学的定量模型使我们能够预测和解释对光遗传学刺激的各种机械反应。最后,我们对观察到的形状动力学进行定性映射,以了解细胞内蛋白质动力学的多功能性如何产生广泛的机械表型。更广泛地说,我们的研究结果提出了一种实时控制生物体动态变形的途径,并且可以推进合成细胞和栩栩如生的细胞功能的设计。