当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proper conflict-free 6-coloring of planar graphs without short cycles
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2025-03-17 , DOI: 10.1016/j.amc.2025.129405
Yunlong Wang , Weifan Wang , Runrun Liu

A proper conflict-free l-coloring of a graph G is a proper l-coloring satisfying that for any non-isolated vertex vV(G), there exists a color appearing exactly once in NG(v). The proper conflict-free chromatic number, denoted by χpcf(G), is the minimal integer l so that G admits a proper conflict-free l-coloring. This notion was proposed by Fabrici et al. in 2022. They focus mainly on proper conflict-free coloring of outerplanar graphs and planar graphs. They constructed a planar graph that has no proper conflict-free 5-coloring and conjectured every planar graph G has χpcf(G)6. In this paper, we confirm this conjecture for planar graphs without cycles of lengths 3, 5 or 6.

中文翻译:


平面图的正确无冲突 6 色,无需短周期



图形 G 的适当无冲突 l 着色是适当的 l 着色,满足任何非孤立顶点 v∈V(G) 存在一种颜色在 NG(v) 中恰好出现一次。正确的无冲突色度数(用 χpcf(G) 表示)是最小整数 l,因此 G 允许适当的无冲突 l 着色。这个概念是由 Fabrici 等人在 2022 年提出的。他们主要关注外平面图和平面图的正确无冲突着色。他们构建了一个没有适当的无冲突 5 色的平面图,并推测每个平面图 G 都有 χpcf(G)≤6。在本文中,我们证实了没有长度为 3、5 或 6 个周期的平面图的这一猜想。
更新日期:2025-03-17
down
wechat
bug