当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Three-dimensional analysis of thermohydraulic performance in corrugated channels with embedded baffles: Optimization of heat transfer and energy efficiency
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2025-03-12 , DOI: 10.1016/j.csite.2025.106019
Jamal-Eddine Salhi , Tarik Zarrouk , Tabish Alam , Md Irfanul Haque Siddiqui , Dan Dobrotă , Mohd Aamir Mumtaz
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2025-03-12 , DOI: 10.1016/j.csite.2025.106019
Jamal-Eddine Salhi , Tarik Zarrouk , Tabish Alam , Md Irfanul Haque Siddiqui , Dan Dobrotă , Mohd Aamir Mumtaz
This study conducts a three-dimensional thermohydraulic analysis of wavy channels equipped with embedded baffles on the upper wall, aiming to optimize heat transfer while minimizing pressure losses. The efficiency of heat exchangers is crucial in many industrial applications, and research efforts have focused on improving their performance through geometric modifications. In this context, baffles play a significant role in increasing turbulence and enhancing heat transfer. Three channel configurations were examined: smooth walls, wavy walls, and wavy walls with rectangular baffles. Numerical simulations validated the model's reliability, with discrepancies below 6.49 % for configurations without baffles and 1.82 % for those with baffles. The results indicate that a baffle height of 5 mm achieves optimal thermal performance, yielding a thermal performance factor of 6.70394 at a Reynolds number of 6000. The introduction of perforated baffles allowed for the exploration of alternative geometries, although increasing the number of perforations reduced the Nusselt number due to decreased recirculation and fluid mixing. For the studied Reynolds number range (1000–6000), the thermal performance factor varies between 6.6022 and 6.7908, depending on the configuration. Models (2) and (4) stand out for their ability to offer an excellent trade-off between thermal performance and energy cost, outperforming the performance of smooth channels. These findings highlight the potential of wavy channels with optimized baffles to enhance the efficiency of thermal systems. Future studies could explore more complex variants of perforated baffles or integrate high-thermal-conductivity materials to further improve performance.
中文翻译:
带嵌入式挡板的波纹通道中热水性能的三维分析:传热和能源效率的优化
本研究对上壁上装有嵌入式挡板的波浪通道进行了三维热水力分析,旨在优化传热,同时最大限度地减少压力损失。换热器的效率在许多工业应用中至关重要,研究工作集中在通过几何修改来提高其性能。在这种情况下,挡板在增加湍流和增强传热方面起着重要作用。检查了三种通道配置:光滑壁、波浪壁和带矩形挡板的波浪壁。数值模拟验证了该模型的可靠性,无挡板配置的差异低于 6.49%,有挡板的配置的差异低于 1.82%。结果表明,5 mm 的挡板高度可实现最佳热性能,在雷诺数为 6000 时,热性能因子为 6.70394。多孔挡板的引入允许探索替代几何形状,尽管由于再循环和流体混合减少,增加多孔数量会减少努塞尔数。对于所研究的雷诺数范围 (1000–6000),热性能系数在 6.6022 和 6.7908 之间变化,具体取决于配置。型号 (2) 和 (4) 因其能够在热性能和能源成本之间提供出色的平衡而脱颖而出,其性能优于平滑通道的性能。这些发现突出了具有优化挡板的波浪形通道在提高热系统效率方面的潜力。未来的研究可以探索更复杂的多孔挡板变体或集成高导热材料以进一步提高性能。
更新日期:2025-03-12
中文翻译:

带嵌入式挡板的波纹通道中热水性能的三维分析:传热和能源效率的优化
本研究对上壁上装有嵌入式挡板的波浪通道进行了三维热水力分析,旨在优化传热,同时最大限度地减少压力损失。换热器的效率在许多工业应用中至关重要,研究工作集中在通过几何修改来提高其性能。在这种情况下,挡板在增加湍流和增强传热方面起着重要作用。检查了三种通道配置:光滑壁、波浪壁和带矩形挡板的波浪壁。数值模拟验证了该模型的可靠性,无挡板配置的差异低于 6.49%,有挡板的配置的差异低于 1.82%。结果表明,5 mm 的挡板高度可实现最佳热性能,在雷诺数为 6000 时,热性能因子为 6.70394。多孔挡板的引入允许探索替代几何形状,尽管由于再循环和流体混合减少,增加多孔数量会减少努塞尔数。对于所研究的雷诺数范围 (1000–6000),热性能系数在 6.6022 和 6.7908 之间变化,具体取决于配置。型号 (2) 和 (4) 因其能够在热性能和能源成本之间提供出色的平衡而脱颖而出,其性能优于平滑通道的性能。这些发现突出了具有优化挡板的波浪形通道在提高热系统效率方面的潜力。未来的研究可以探索更复杂的多孔挡板变体或集成高导热材料以进一步提高性能。