当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low‐Coordination Triangular Cu3 Motif Steers CO2 Photoreduction to Ethanol
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2025-03-19 , DOI: 10.1002/anie.202500928
Huining Wang 1 , Lu Song 1 , Ximeng Lv 1 , Haozhen Wang 1 , Fan Zhang 1 , Shuya Hao 1 , Ruilin Wei 1 , Lijuan Zhang 1 , Qing Han 1 , Gengfeng Zheng 2
Affiliation  

Photoreduction of CO2 using copper‐based multi‐atom catalysts (MACs) offers a potential approach to achieve value‐added C2+ products. However, achieving MACs with high metal contents and suppressing the thermodynamically favored competing ethylene production pathway remain challenging, thus leading to unsatisfactory performance in ethanol production. Herein, we developed a ‘pre‐locking and nanoconfined polymerization’ strategy for synthesis of an ultra‐high‐density Cu MAC with low‐coordination triangular Cu3 motifs (Cu3 MAC) on polymeric carbon nitride mesoporous nanofibers. The Cu3 MAC with Cu contents of 36 wt% achieves a high reactivity of 117 μmol·g‐1·h‐1 for ethanol production from CO2 and H2O, with a remarkable selectivity of 98% under simulated sunlight irradiation, representing one of the highest performances in ambient conditions without sacrificial reagents. The superior catalytic efficiency is attributed to the triangular Cu3 configuration, in which both Cu(I) and Cu(II) coexist, predominantly as Cu(I). Such Cu3 motifs act as strong alkaline sites that effectively chemisorb and activate CO2, extend visible‐light absorption range, while accumulating high‐density electrons and favoring 12‐electron‐transfer products. An accelerated asymmetric C‐C coupling with adsorption configuration of the bridge‐adsorbed *CO at paired Cu sites and atop‐adsorbed *CO at adjacent single Cu atom was observed, enabling preferential formation of *CHCHOH intermediates to produce ethanol.

中文翻译:


低配位三角形 Cu3 基序将 CO2 光还原转化为乙醇



使用铜基多原子催化剂 (MAC) 对 CO2 进行光还原为实现 C2+ 产品的增值提供了一种潜在的方法。然而,实现高金属含量的 MAC 并抑制热力学上有利的竞争性乙烯生产途径仍然具有挑战性,从而导致乙醇生产性能不令人满意。在此,我们开发了一种“预锁定和纳米限制聚合”策略,用于在聚合物氮化碳介孔纳米纤维上合成具有低配位三角形 Cu3 基序 (Cu3 MAC) 的超高密度 Cu MAC。Cu 含量为 36 wt% 的 Cu3 MAC 对从 CO2 和 H2O 生产乙醇的反应性达到 117 μmol·g‐1·h-1,在模拟阳光照射下具有 98% 的显着选择性,代表了在环境条件下无需牺牲试剂的最高性能之一。卓越的催化效率归因于三角形 Cu3 构型,其中 Cu(I) 和 Cu(II) 共存,主要以 Cu(I) 的形式存在。这种 Cu3 基序充当强碱性位点,可有效化学吸附和激活 CO2,扩大可见光吸收范围,同时积累高密度电子并有利于 12 电子转移产物。观察到桥吸附的 *CO 在成对的 Cu 位点和顶部吸附的 *CO 在相邻的单个 Cu 原子上的吸附构型的加速不对称 C-C 偶联,从而能够优先形成 *CHCHOH 中间体以生产乙醇。
更新日期:2025-03-19
down
wechat
bug