当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In situ Detection of the Molecule-Crowded Aqueous Electrode–Electrolyte Interface
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2025-03-19 , DOI: 10.1021/jacs.4c14053
Shiqiang Wei 1 , Hongwei Shou 1 , Zheng-Hang Qi 1, 2 , Shuangming Chen 1 , Yong Han 3 , Shucheng Shi 3 , Yixiu Wang 1 , Pengjun Zhang 1 , Jialin Shi 1 , Zijun Zhang 1 , Yuyang Cao 1 , Changda Wang 1 , Jiewu Cui 4 , Xiaojun Wu 5 , Zhi Liu 3 , Li Song 1, 6
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2025-03-19 , DOI: 10.1021/jacs.4c14053
Shiqiang Wei 1 , Hongwei Shou 1 , Zheng-Hang Qi 1, 2 , Shuangming Chen 1 , Yong Han 3 , Shucheng Shi 3 , Yixiu Wang 1 , Pengjun Zhang 1 , Jialin Shi 1 , Zijun Zhang 1 , Yuyang Cao 1 , Changda Wang 1 , Jiewu Cui 4 , Xiaojun Wu 5 , Zhi Liu 3 , Li Song 1, 6
Affiliation
![]() |
Electrode–electrolyte interface plays a crucial role in determining the stability and behavior of electrochemical electrodes. Although X-ray photoelectron spectroscopy has been established as a powerful analytical technique for interface chemistry, the necessity for ultrahigh vacuum remains a significant obstacle to directly detecting dynamic interfacial evolution, particularly in aqueous environments. Here, we employ tender-energy ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to bridge the gap between ultrahigh vacuum and near-atmospheric pressure, enabling an in-depth investigation of the molecule-crowded aqueous interface evolution in a Zn metal anode. The results demonstrate that the persistent presence of additive molecules effectively inhibits direct contact between reactive Zn and H2O, while also facilitating uniform Zn deposition. In situ optical microscopy observations and synchrotron radiation X-ray diffraction further verified the uniform and dense Zn deposition, attributed to lateral growth induced by the (002) crystal facet evolution. As proof of its effectiveness, batteries incorporating the Zn//Zn, Zn//Cu, and full cell with the additive demonstrate significantly improved stability and reversibility. This finding opens up new avenues for exploration of interfacial chemistry at the molecule level, offering insights into the design of highly stable metal anodes of aqueous ion batteries for practical applications.
中文翻译:
分子拥挤的水性电极-电解质界面的原位检测
电极-电解质界面在决定电化学电极的稳定性和行为方面起着至关重要的作用。尽管 X 射线光电子能谱已被确立为界面化学的强大分析技术,但超高真空的必要性仍然是直接检测动态界面演变的重大障碍,尤其是在水性环境中。在这里,我们采用柔和能量环境压力 X 射线光电子能谱 (AP-XPS) 来弥合超高真空和近大气压之间的差距,从而能够深入研究 Zn 金属阳极中分子拥挤的水界面演变。结果表明,添加剂分子的持续存在有效地抑制了反应性 Zn 和 H2O 之间的直接接触,同时也促进了 Zn 的均匀沉积。原位光学显微镜观察和同步辐射 X 射线衍射进一步验证了均匀而致密的 Zn 沉积,这归因于 (002) 晶体刻面演化诱导的横向生长。作为其有效性的证明,将 Zn//Zn、Zn//Cu 和全电池与添加剂相结合的电池表现出显着提高的稳定性和可逆性。这一发现为分子水平界面化学的探索开辟了新的途径,为实际应用中高度稳定的水系离子电池金属负极的设计提供了见解。
更新日期:2025-03-19
中文翻译:

分子拥挤的水性电极-电解质界面的原位检测
电极-电解质界面在决定电化学电极的稳定性和行为方面起着至关重要的作用。尽管 X 射线光电子能谱已被确立为界面化学的强大分析技术,但超高真空的必要性仍然是直接检测动态界面演变的重大障碍,尤其是在水性环境中。在这里,我们采用柔和能量环境压力 X 射线光电子能谱 (AP-XPS) 来弥合超高真空和近大气压之间的差距,从而能够深入研究 Zn 金属阳极中分子拥挤的水界面演变。结果表明,添加剂分子的持续存在有效地抑制了反应性 Zn 和 H2O 之间的直接接触,同时也促进了 Zn 的均匀沉积。原位光学显微镜观察和同步辐射 X 射线衍射进一步验证了均匀而致密的 Zn 沉积,这归因于 (002) 晶体刻面演化诱导的横向生长。作为其有效性的证明,将 Zn//Zn、Zn//Cu 和全电池与添加剂相结合的电池表现出显着提高的稳定性和可逆性。这一发现为分子水平界面化学的探索开辟了新的途径,为实际应用中高度稳定的水系离子电池金属负极的设计提供了见解。