当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revolutionizing Wearable Sustainable Energy Enabled by Mechano-Electric Conversion Fibers
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2025-03-19 , DOI: 10.1039/d5ee00144g
Jizhong Zhao, Xiaoxuan Fan, Hongxiang Xie, Yi Luo, Zhifeng Li, Xiao Peng, Guangming Tao, Zhong Lin Wang, Kai Dong
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2025-03-19 , DOI: 10.1039/d5ee00144g
Jizhong Zhao, Xiaoxuan Fan, Hongxiang Xie, Yi Luo, Zhifeng Li, Xiao Peng, Guangming Tao, Zhong Lin Wang, Kai Dong
Mechano-electric conversion fibers (MECFs) represent a groundbreaking innovation in smart textiles, integrating the high-efficiency mechanical energy conversion of triboelectric nanogenerators (TENGs) with superior wearability and comfort inherent in textile materials. Despite notable advancements in MECFs, comprehensive reviews and in-depth discussions of their fundamental principles and unique advantages remain scarce. Herein, this review aims to bridge this gap by providing a systematic analysis and objective outlook of MECFs, with a particular emphasis on their transformative potential in revolutionizing energy harvesting and self-powered sensing in human-centered applications. Driven by diverse structural designs, abundant material selection configurations, and high conversion efficiency at low frequencies, MECFs have developed a self-sufficient human surface energy supply-demand system that is autonomous, sustainable and undisturbed. Their high sensitivity is underpinned by a multilinear dynamic progressive response mechanism, facilitating rapid response times and high sensitivity across a wide spectrum of mechanical stimuli. In addition, the prominent applications of MECFs in self-powered wearable sensing are also explored, including personalized healthcare monitoring, human-machine interacting, and smart security protecting. Finally, we discuss in detail the key challenges and bottlenecks that still exist in MECF development, alongside promising solutions and future development directions. This work seeks to establish a comprehensive knowledge theoretical framework for MECFs and accelerate their transition from fundamental research to large-scale practical applications.
中文翻译:
革新由机电转换纤维实现的可穿戴可持续能源
机电转换纤维 (MECF) 代表了智能纺织品的突破性创新,它将摩擦纳米发电机 (TENG) 的高效机械能转换与纺织材料固有的卓越耐磨性和舒适性相结合。尽管 MECF 取得了显着进步,但对其基本原理和独特优势的全面审查和深入讨论仍然很少。在此,本综述旨在通过提供对 MECF 的系统分析和客观展望来弥合这一差距,特别强调它们在革命以人为本的应用中能量收集和自供电传感方面的变革潜力。在多样化的结构设计、丰富的材料选择配置和低频高转换效率的驱动下,MECF 开发了一种自给自足的人类表面能源供需系统,该系统是自主的、可持续的和不受干扰的。它们的高灵敏度以多线性动态渐进式响应机制为基础,有助于在各种机械刺激下实现快速响应时间和高灵敏度。此外,还探讨了 MECF 在自供电可穿戴传感中的突出应用,包括个性化医疗保健监测、人机交互和智能安全保护。最后,我们详细讨论了 MECF 开发中仍然存在的主要挑战和瓶颈,以及有前景的解决方案和未来的发展方向。这项工作旨在为 MECF 建立一个全面的知识理论框架,并加速其从基础研究向大规模实际应用的过渡。
更新日期:2025-03-19
中文翻译:

革新由机电转换纤维实现的可穿戴可持续能源
机电转换纤维 (MECF) 代表了智能纺织品的突破性创新,它将摩擦纳米发电机 (TENG) 的高效机械能转换与纺织材料固有的卓越耐磨性和舒适性相结合。尽管 MECF 取得了显着进步,但对其基本原理和独特优势的全面审查和深入讨论仍然很少。在此,本综述旨在通过提供对 MECF 的系统分析和客观展望来弥合这一差距,特别强调它们在革命以人为本的应用中能量收集和自供电传感方面的变革潜力。在多样化的结构设计、丰富的材料选择配置和低频高转换效率的驱动下,MECF 开发了一种自给自足的人类表面能源供需系统,该系统是自主的、可持续的和不受干扰的。它们的高灵敏度以多线性动态渐进式响应机制为基础,有助于在各种机械刺激下实现快速响应时间和高灵敏度。此外,还探讨了 MECF 在自供电可穿戴传感中的突出应用,包括个性化医疗保健监测、人机交互和智能安全保护。最后,我们详细讨论了 MECF 开发中仍然存在的主要挑战和瓶颈,以及有前景的解决方案和未来的发展方向。这项工作旨在为 MECF 建立一个全面的知识理论框架,并加速其从基础研究向大规模实际应用的过渡。