当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Sacrifice of Sulfide Electrolytes Facilitating Stable Solid-State Sodium-Sulfur Batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2025-03-19 , DOI: 10.1039/d4ee06171c
Yi Yuan, yang Hu, Yi Gan, Zhi Liang Dong, Yijia Wang, Enzhong Jin, Mingrui Yang, Frederick Benjamin Holness, Vinicius Martins, Qingsong Tu, Yang Zhao

Sulfide electrolytes have emerged as the preferred choice for solid-state sodium-sulfur (Na-S) batteries due to their excellent compatibility with sulfur cathodes. Despite their advantages, such as high ionic conductivity, mechanical flexibility, and enhanced safety, challenges like narrow electrochemical stability windows and inadequate interfacial contact persist and require urgent resolution. Contrary to the conventional approach of minimizing electrolyte degradation, this study leverages the decomposition of a typically unstable sulfide electrolyte, Na3SbS4 (NAS), to enhance both cathode and anode interfaces. By elucidating the reversible self-redox mechanism of NAS, we demonstrate that a cathode composite containing NAS-S as co-active materials achieves an exceptional discharge capacity at room temperature, surpassing the theoretical specific capacity of sulfur alone. Furthermore, the strong interaction between NAS and a Na-based alloy anode leads to the in-situ formation of a homogeneous interlayer. This passivation layer, acting as both an electron regulator and protective barrier, prevents further electrolyte corrosion and dendrite penetration, resulting in remarkable cycling stability. This novel approach of utilizing electrolyte decomposition offers a fresh perspective on interface engineering, advancing solid-state Na-S batteries towards practical, next-generation energy storage solutions with improved capacity output and cycle life.

中文翻译:


硫化物电解质的自牺牲有助于稳定的固态钠硫电池



硫化物电解质因其与硫阴极的出色相容性而成为固态钠硫 (Na-S) 电池的首选。尽管具有离子电导率高、机械柔韧性高、安全性高等优点,但电化学稳定性窗口窄和界面接触不足等挑战仍然存在,亟需解决。与最大限度地减少电解质降解的传统方法相反,本研究利用通常不稳定的硫化物电解质 Na3SbS4 (NAS) 的分解来增强阴极和阳极界面。通过阐明 NAS 的可逆自氧化还原机制,我们证明了包含 NAS-S 作为共活性材料的阴极复合材料在室温下具有优异的放电容量,超过了单独使用硫的理论比容量。此外,NAS 和 Na 基合金阳极之间的强相互作用导致原位形成均匀的夹层。该钝化层既充当电子调节剂又充当保护屏障,可防止电解质进一步腐蚀和枝晶渗透,从而获得卓越的循环稳定性。这种利用电解质分解的新方法为界面工程提供了新的视角,将固态 Na-S 电池推进到实用的下一代储能解决方案,提高了容量输出和循环寿命。
更新日期:2025-03-19
down
wechat
bug