当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe Doping Intensifies Built-in Electric Field for Tailoring the Reconstruction of Sulfides towards Efficient Oxygen Evolution
Chemical Science ( IF 7.6 ) Pub Date : 2025-03-19 , DOI: 10.1039/d4sc08789e
Kun Wang , Chunmei Ni , Lei Jin , Xingyue Qian , Hui Xu , Haiqun Chen , Guangyu He
Chemical Science ( IF 7.6 ) Pub Date : 2025-03-19 , DOI: 10.1039/d4sc08789e
Kun Wang , Chunmei Ni , Lei Jin , Xingyue Qian , Hui Xu , Haiqun Chen , Guangyu He
The traditional view of sulfides as stable active centers has hindered the development of a clear structure-activity relationship and the rational design of high-performance oxygen evolution reaction (OER) catalysts. In this study, we focus on regulating sulfide reconstruction and have synthesized a carefully designed Fe-Ni3S4/Cr2O3 pre-catalyst. Under the combined influence of the built-in electric field (BIEF) at the heterogeneous interface and Fe doping, both the sulfide reconstruction process and the electronic structure of the reconstructed product, namely Fe-NiOOH, were effectively tuned. The enhanced BIEF induced by Fe doping generated electron-rich regions on the sulfide surface, stabilizing the reconstruction process. Fe doped into the sulfide induced the incorporation of Fe into NiOOH, modulating the electronic states near the Fermi level of the metal-oxygen bond and subsequently activating the lattice oxygen mediated mechanism (LOM) of Fe-NiOOH, which serves as the true active center. Additionally, the BIEF optimized OH- diffusion dynamics and the energy consumption of hydroxyl deprotonation, the rate-limiting step of the LOM process, further enhancing OER activity. Remarkably, Fe-Ni3S4/Cr2O3 demonstrated excellent OER activity and commercial viability. This work offers a new perspective on the regulation of pre-catalyst reconstruction products, providing fresh insights for the design of efficient OER catalysts.
中文翻译:
Fe 掺杂增强了内置电场,用于调整硫化物的重建以实现高效的析氧
将硫化物视为稳定的活性中心的传统观点阻碍了明确的构效关系的发展和高性能析氧反应 (OER) 催化剂的合理设计。在本研究中,我们专注于调控硫化物重构,并合成了一种精心设计的 Fe-Ni3S4/Cr2O3 预催化剂。在异质界面内置电场 (BIEF) 和 Fe 掺杂的共同影响下,硫化物重构过程和重构产物的电子结构(即 Fe-NiOOH)都得到了有效的调节。Fe 掺杂诱导的增强 BIEF 在硫化物表面产生富电子区域,稳定了重建过程。掺杂硫化物的 Fe 诱导 Fe 掺入 NiOOH 中,调节金属-氧键费米能级附近的电子态,随后激活 Fe-NiOOH 的晶格氧介导机制 (LOM),这是真正的活性中心。此外,BIEF 优化了 OH- 扩散动力学和羟基去质子化的能耗,这是 LOM 过程的限速步骤,进一步增强了 OER 活性。值得注意的是,Fe-Ni3S4/Cr2O3 表现出优异的 OER 活性和商业可行性。这项工作为催化剂前重构产物的调控提供了新的视角,为高效 OER 催化剂的设计提供了新的见解。
更新日期:2025-03-19
中文翻译:

Fe 掺杂增强了内置电场,用于调整硫化物的重建以实现高效的析氧
将硫化物视为稳定的活性中心的传统观点阻碍了明确的构效关系的发展和高性能析氧反应 (OER) 催化剂的合理设计。在本研究中,我们专注于调控硫化物重构,并合成了一种精心设计的 Fe-Ni3S4/Cr2O3 预催化剂。在异质界面内置电场 (BIEF) 和 Fe 掺杂的共同影响下,硫化物重构过程和重构产物的电子结构(即 Fe-NiOOH)都得到了有效的调节。Fe 掺杂诱导的增强 BIEF 在硫化物表面产生富电子区域,稳定了重建过程。掺杂硫化物的 Fe 诱导 Fe 掺入 NiOOH 中,调节金属-氧键费米能级附近的电子态,随后激活 Fe-NiOOH 的晶格氧介导机制 (LOM),这是真正的活性中心。此外,BIEF 优化了 OH- 扩散动力学和羟基去质子化的能耗,这是 LOM 过程的限速步骤,进一步增强了 OER 活性。值得注意的是,Fe-Ni3S4/Cr2O3 表现出优异的 OER 活性和商业可行性。这项工作为催化剂前重构产物的调控提供了新的视角,为高效 OER 催化剂的设计提供了新的见解。