当前位置:
X-MOL 学术
›
Proc. Natl. Acad. Sci. U.S.A.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Functional morphology of gliding motility in benthic diatoms
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2025-03-18 , DOI: 10.1073/pnas.2426910122
Karen Grace Bondoc-Naumovitz 1, 2 , Emanuele Crosato 1, 2 , Kirsty Y Wan 1, 2
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2025-03-18 , DOI: 10.1073/pnas.2426910122
Karen Grace Bondoc-Naumovitz 1, 2 , Emanuele Crosato 1, 2 , Kirsty Y Wan 1, 2
Affiliation
Diatoms, a highly successful group of photosynthetic algae, contribute to a quarter of global primary production. Many species are motile, despite having no appendages and a completely rigid cell body. Cells move to seek out nutrients, locate mating partners, and undergo vertical migration. To explore the natural diversity of diatom motility, we perform a comparative study across five common biofilm-forming species. Combining morphological measurements with high-resolution cell tracking, we establish how gliding movements relate to the morphology of the raphe—a specialized slit in the cell wall responsible for motility generation. Our detailed analyses reveal that cells exhibit a rich but species-dependent phenotype, switching stochastically between four stereotyped motility states. We model this behavior and use stochastic simulations to predict how heterogeneity in microscale navigation patterns leads to differences in long-time diffusivity and dispersal. In a representative species, we extend these findings to quantify diatom gliding in complex, naturalistic 3D environments, suggesting that cells may exploit these distinct motility signatures to achieve niche segregation in nature.
中文翻译:
底栖硅藻中滑动运动的功能形态
硅藻是一组非常成功的光合藻类,占全球初级产量的四分之一。许多物种是可活动的,尽管没有附属物并且具有完全刚性的细胞体。细胞移动以寻找营养,找到交配伙伴,并进行垂直迁移。为了探索硅藻运动的自然多样性,我们对五种常见的生物膜形成物种进行了比较研究。将形态学测量与高分辨率细胞追踪相结合,我们确定了滑动运动与 raphe 的形态之间的关系——细胞壁上负责产生运动的特殊狭缝。我们的详细分析表明,细胞表现出丰富但物种依赖性的表型,在四种刻板的运动状态之间随机切换。我们对这种行为进行建模,并使用随机模拟来预测微尺度导航模式中的异质性如何导致长期扩散率和扩散的差异。在一个代表性物种中,我们扩展了这些发现以量化复杂、自然 3D 环境中的硅藻滑动,表明细胞可以利用这些独特的运动特征在自然界中实现生态位分离。
更新日期:2025-03-18
中文翻译:

底栖硅藻中滑动运动的功能形态
硅藻是一组非常成功的光合藻类,占全球初级产量的四分之一。许多物种是可活动的,尽管没有附属物并且具有完全刚性的细胞体。细胞移动以寻找营养,找到交配伙伴,并进行垂直迁移。为了探索硅藻运动的自然多样性,我们对五种常见的生物膜形成物种进行了比较研究。将形态学测量与高分辨率细胞追踪相结合,我们确定了滑动运动与 raphe 的形态之间的关系——细胞壁上负责产生运动的特殊狭缝。我们的详细分析表明,细胞表现出丰富但物种依赖性的表型,在四种刻板的运动状态之间随机切换。我们对这种行为进行建模,并使用随机模拟来预测微尺度导航模式中的异质性如何导致长期扩散率和扩散的差异。在一个代表性物种中,我们扩展了这些发现以量化复杂、自然 3D 环境中的硅藻滑动,表明细胞可以利用这些独特的运动特征在自然界中实现生态位分离。
