当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MoS2-based quantum dot artificial synapses for neuromorphic computing
Materials Today Physics ( IF 10.0 ) Pub Date : 2025-03-18 , DOI: 10.1016/j.mtphys.2025.101703
Gongjie Liu , Haoqi Liu , Feifan Fan , Yuefeng Gu , Lisi Wei , Xiaolin Xiang , Yuhao Wang , Qiuhong Li

The advancement of deep learning has escalated computational requirements. Neuromorphic devices, particularly those based on memristors, present strong potential to meet these demands. However, current memristors face challenges such as a low on/off ratio and poor linearity, which hinder the progress of neuromorphic computing. Here, we propose a MoS2-based quantum dot memristor, where the presence of quantum dots facilitates the formation and stability of conductive channels. The device exhibits narrow set and reset voltage distributions, with an on/off ratio reaching 105 and multiple resistive states. Based on these multi-state characteristics, we achieved parallel image processing with various operators. The excitatory postsynaptic current (EPSC), spike-timing-dependent plasticity (STDP), paired-pulse facilitation (PPF), long-term potentiation (LTP), and long-term depression (LTD) characteristics of the device were tested, with the linearity of LTP and LTD being 0.21 and −0.25, respectively. Based on the good linearity of weight updates, we built an artificial neural network to recognize facial images with Gaussian, salt-and-pepper, and Poisson noise. At noise levels of 40 %, 48 %, and λ = 80, the recognition accuracy rates were still as high as 100 %, 100 %, and 97.33 %, respectively. This work provides a valuable reference for quantum dot-based neuromorphic computing.

中文翻译:


用于神经形态计算的基于 MoS2 的量子点人工突触



深度学习的进步提高了计算要求。神经形态器件,尤其是那些基于忆阻器的器件,在满足这些需求方面具有强大的潜力。然而,当前的忆阻器面临着低导通比和线性度差等挑战,这阻碍了神经形态计算的发展。在这里,我们提出了一种基于 MoS2 的量子点忆阻器,其中量子点的存在促进了导电通道的形成和稳定性。该器件具有较窄的设置和复位电压分布,开/关比达到 105 和多种电阻状态。基于这些多状态特性,我们实现了与各种算子的并行图像处理。测试了该装置的兴奋性突触后电流 (EPSC) 、尖峰时间依赖性可塑性 (STDP) 、成对脉冲促进 (PPF) 、长时程增强 (LTP) 和长期抑制 (LTD) 特性,LTP 和 LTD 的线性度分别为 0.21 和 -0.25。基于权重更新的良好线性,我们构建了一个人工神经网络来识别具有高斯、胡椒盐和泊松噪声的面部图像。在 40 %、48 % 和 λ = 80 的噪声水平下,识别准确率仍分别高达 100 %、100 % 和 97.33 %。这项工作为基于量子点的神经形态计算提供了有价值的参考。
更新日期:2025-03-18
down
wechat
bug