当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sets of r-Graphs that Color All r-Graphs
Combinatorica ( IF 1.0 ) Pub Date : 2025-03-14 , DOI: 10.1007/s00493-025-00144-4
Yulai Ma , Davide Mattiolo , Eckhard Steffen , Isaak H. Wolf

An r-regular graph is an r-graph, if every odd set of vertices is connected to its complement by at least r edges. Let G and H be r-graphs. An H-coloring of G is a mapping \(f:E(G) \rightarrow E(H)\) such that each r adjacent edges of G are mapped to r adjacent edges of H. For every \(r\ge 3\), let \(\mathcal H_r\) be an inclusion-wise minimal set of connected r-graphs, such that for every connected r-graph G there is an \(H \in \mathcal H_r\) which colors G. The Petersen Coloring Conjecture states that \(\mathcal H_3\) consists of the Petersen graph P. We show that if true, then this is a very exclusive situation. Our main result is that either \(\mathcal H_3 = \{P\}\) or \(\mathcal H_3\) is an infinite set and if \(r \ge 4\), then \(\mathcal H_r\) is an infinite set. In particular, for all \(r \ge 3\), \(\mathcal H_r\) is unique. We first characterize \(\mathcal H_r\) and then prove that if \(\mathcal H_r\) contains more than one element, then it is an infinite set. To obtain our main result we show that \(\mathcal H_r\) contains the smallest r-graphs of class 2 and the smallest poorly matchable r-graphs, and we determine the smallest r-graphs of class 2.



中文翻译:


为所有 r 图着色的 r 图集



如果每组奇数顶点都由至少 r 条边连接到其补码,则 r 正则图就是 r 图。设 GHr 图。GH 着色是映射 \(f:E(G) \rightarrow E(H)\) 使得 G 的每个 r 个相邻边都映射到 Hr 个相邻边。对于每个 \(r\ge 3\),\(\mathcal H_r\) 是一组连通的 r 图的最小集合,使得对于每个连通的 rG,都有一个 \(H \in \mathcal H_r\)G 着色。彼得森着色猜想指出 \(\mathcal H_3\) 由彼得森图 P 组成。我们表明,如果属实,那么这是一个非常独特的情况。我们的主要结果是 \(\mathcal H_3 = \{P\}\)\(\mathcal H_3\) 是一个无限集,如果 \(r \ge 4\) ,则 \(\mathcal H_r\) 是一个无限集。特别是,对于所有 \(r \ge 3\) 来说,\(\mathcal H_r\) 是唯一的。我们首先描述 \(\mathcal H_r\),然后证明如果 \(\mathcal H_r\) 包含多个元素,那么它是一个无限集。为了获得我们的主要结果,我们表明 \(\mathcal H_r\) 包含最小的 2 类 r 图和最小的不匹配性差的 r 图,并且我们确定了 2 类的最小 r 图。

更新日期:2025-03-14
down
wechat
bug