当前位置:
X-MOL 学术
›
J. Comb. Theory B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A half-integral Erdős-Pósa theorem for directed odd cycles
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2025-01-07 , DOI: 10.1016/j.jctb.2024.12.008
Ken-ichi Kawarabayashi , Stephan Kreutzer , O-joung Kwon , Qiqin Xie
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2025-01-07 , DOI: 10.1016/j.jctb.2024.12.008
Ken-ichi Kawarabayashi , Stephan Kreutzer , O-joung Kwon , Qiqin Xie
We prove that there exists a function f : N → R such that every directed graph G contains either k directed odd cycles where every vertex of G is contained in at most two of them, or a set of at most f ( k ) vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed k which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs.
中文翻译:
有向奇数循环的半积分 Erdős-Pósa 定理
我们证明存在一个函数 f:N→R,使得每个有向图 G 都包含 k 个有向奇数循环,其中 G 的每个顶点最多包含其中两个,或者一组最多 f(k) 个顶点满足所有有向奇数循环。我们给出了一个固定 k 的多项式时间算法,它输出两个结果之一。这将 Reed [Combinatorica 1999] 的无向奇数循环的半积分 Erdős-Pósa 定理扩展到有向图。
更新日期:2025-01-07
中文翻译:

有向奇数循环的半积分 Erdős-Pósa 定理
我们证明存在一个函数 f:N→R,使得每个有向图 G 都包含 k 个有向奇数循环,其中 G 的每个顶点最多包含其中两个,或者一组最多 f(k) 个顶点满足所有有向奇数循环。我们给出了一个固定 k 的多项式时间算法,它输出两个结果之一。这将 Reed [Combinatorica 1999] 的无向奇数循环的半积分 Erdős-Pósa 定理扩展到有向图。