当前位置:
X-MOL 学术
›
Eng. Anal. Bound. Elem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A computationally efficient peridynamic framework for modeling damage in viscoelastic fiber-reinforced lamina
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2025-03-06 , DOI: 10.1016/j.enganabound.2025.106196
Alireza Masoumi , Amirreza Moradi , Mohammad Ravandi , Manouchehr Salehi
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2025-03-06 , DOI: 10.1016/j.enganabound.2025.106196
Alireza Masoumi , Amirreza Moradi , Mohammad Ravandi , Manouchehr Salehi
A novel computational framework based on modified bond-based peridynamics is proposed for viscoelastic laminas. The framework accurately captures deformations, damage initiation, and propagation under mechanical and thermal loads. It reduces numerical complexity by directly assessing viscoelastic strains each time step, eliminating real-time increment constraints. Constitutive component models, including viscoelastic Prony series and lamina stiffness matrices, are integrated into a 2D formulation. To address the limitations of the adaptive dynamic relaxation (ADR) method in modeling high-rate phenomena, an innovative ADR variant with an infinitesimal steady time step is introduced, enabling accurate capture of thermoviscoelastic creep-recovery responses above glass transition temperatures. Model validation against literature data, analytical solutions, and finite element models demonstrates accurate predictions of thermoviscoelastic responses, lamina deformations, damage initiation, and propagation patterns. Stress-strain diagrams reveal an inverse relationship between fiber orientation and stress peaks. The framework's efficiency makes it suitable for modeling complex viscoelastic composites and delamination damage. Its capabilities enable high-fidelity virtual testing and design of advanced composites under multi-axial viscoelastic conditions.
中文翻译:
用于模拟粘弹性纤维增强层损伤的计算高效近场动力学框架
提出了一种基于改进的基于键的近场动力学的新型计算框架,用于粘弹性层。该框架可以准确捕捉机械和热载荷下的变形、损伤起始和传播。它通过直接评估每个时间步的粘弹性应变来降低数值复杂性,从而消除实时增量约束。本构组件模型(包括粘弹性 Prony 级数和层板刚度矩阵)被集成到 2D 公式中。为了解决自适应动态弛豫 (ADR) 方法在模拟高速率现象方面的局限性,引入了一种具有无限小稳态时间步长的创新 ADR 变体,能够准确捕获玻璃化转变温度以上的热粘弹性蠕变恢复响应。根据文献数据、分析解和有限元模型进行模型验证,可以准确预测热粘弹性响应、层变形、损伤起始和传播模式。应力-应变图揭示了纤维取向和应力峰值之间的反比关系。该框架的效率使其适用于复杂的粘弹性复合材料和分层损伤建模。它的功能能够在多轴粘弹性条件下对先进复合材料进行高保真虚拟测试和设计。
更新日期:2025-03-06
中文翻译:

用于模拟粘弹性纤维增强层损伤的计算高效近场动力学框架
提出了一种基于改进的基于键的近场动力学的新型计算框架,用于粘弹性层。该框架可以准确捕捉机械和热载荷下的变形、损伤起始和传播。它通过直接评估每个时间步的粘弹性应变来降低数值复杂性,从而消除实时增量约束。本构组件模型(包括粘弹性 Prony 级数和层板刚度矩阵)被集成到 2D 公式中。为了解决自适应动态弛豫 (ADR) 方法在模拟高速率现象方面的局限性,引入了一种具有无限小稳态时间步长的创新 ADR 变体,能够准确捕获玻璃化转变温度以上的热粘弹性蠕变恢复响应。根据文献数据、分析解和有限元模型进行模型验证,可以准确预测热粘弹性响应、层变形、损伤起始和传播模式。应力-应变图揭示了纤维取向和应力峰值之间的反比关系。该框架的效率使其适用于复杂的粘弹性复合材料和分层损伤建模。它的功能能够在多轴粘弹性条件下对先进复合材料进行高保真虚拟测试和设计。