当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Buckybowl-Based Nanocarbons: Synthesis, Properties, and Applications
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2025-02-20 , DOI: 10.1021/acs.accounts.4c00812
Yan Chen 1 , Lei Zhang 1
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2025-02-20 , DOI: 10.1021/acs.accounts.4c00812
Yan Chen 1 , Lei Zhang 1
Affiliation
![]() |
The introduction of a five-membered ring into hexagon-fused networks typically induces strain that causes positive Gaussian curvature, leading to bowl-shaped polycyclic aromatic hydrocarbons (PAHs), often referred to as buckybowls or π-bowls. The interest in buckybowls is derived from their intriguing properties including, but not limited to, pyramidalized sp2 carbon atoms, low-lying lowest unoccupied molecular orbital (LUMO), surface charge stabilization, and bowl-to-bowl inversion. In recent years, investigations into the functionalization of buckybowls, as well as the structural aspects related to properties, have made significant progress. Indeed, the functionalization of buckybowls is a major route to increase structural diversity and fine-tune their properties. In particular, the fusion of aromatic rings to buckybowl rims (π-extension of buckybowls) has established a particularly promising synthetic strategy to access a wide range of buckybowl-based nanostructures with unique topologies and properties. A major obstacle, however, is the limited number of appropriate buckybowls, which could be suggested as potential frameworks for further functionalization. Moreover, buckybowls have been typically synthesized by ring-closing reactions, but many of these procedures suffer from the occurrence of considerable strain and lead to an undesired rearrangement. As a result, the development of buckybowl-based nanocarbons with desirable properties is still in its infancy due to the limited structural diversity, functionalization, and scalability.
中文翻译:
基于 Buckybowl 的纳米碳:合成、性质和应用
将五元环引入六边形熔融网络通常会诱导应变,导致正高斯曲率,从而导致碗状多环芳烃 (PAH),通常称为布基碗或π碗。对 buckybowls 的兴趣源于其有趣的特性,包括但不限于金字塔化的 sp2 碳原子、低位最低未占据分子轨道 (LUMO)、表面电荷稳定和碗到碗的反转。近年来,对 buckybowls 的功能化以及与性能相关的结构方面的研究取得了重大进展。事实上,buckybowls 的功能化是增加结构多样性和微调其特性的主要途径。特别是,芳香环与 buckybowl 边缘的融合(buckybowls 的π延伸)建立了一种特别有前途的合成策略,以获得具有独特拓扑和特性的各种基于 buckybowl 的纳米结构。然而,一个主要障碍是合适的 buckybowl 数量有限,这可以被认为是进一步功能化的潜在框架。此外,buckybowls 通常是通过闭环反应合成的,但其中许多程序都会产生相当大的应变并导致不希望的重排。因此,由于结构多样性、功能化和可扩展性有限,具有理想特性的基于 buckybowl 的纳米碳的开发仍处于起步阶段。
更新日期:2025-02-20
中文翻译:

基于 Buckybowl 的纳米碳:合成、性质和应用
将五元环引入六边形熔融网络通常会诱导应变,导致正高斯曲率,从而导致碗状多环芳烃 (PAH),通常称为布基碗或π碗。对 buckybowls 的兴趣源于其有趣的特性,包括但不限于金字塔化的 sp2 碳原子、低位最低未占据分子轨道 (LUMO)、表面电荷稳定和碗到碗的反转。近年来,对 buckybowls 的功能化以及与性能相关的结构方面的研究取得了重大进展。事实上,buckybowls 的功能化是增加结构多样性和微调其特性的主要途径。特别是,芳香环与 buckybowl 边缘的融合(buckybowls 的π延伸)建立了一种特别有前途的合成策略,以获得具有独特拓扑和特性的各种基于 buckybowl 的纳米结构。然而,一个主要障碍是合适的 buckybowl 数量有限,这可以被认为是进一步功能化的潜在框架。此外,buckybowls 通常是通过闭环反应合成的,但其中许多程序都会产生相当大的应变并导致不希望的重排。因此,由于结构多样性、功能化和可扩展性有限,具有理想特性的基于 buckybowl 的纳米碳的开发仍处于起步阶段。