当前位置: X-MOL 学术Autom. Constr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tile detection using mask R-CNN in non-structural environment for robotic tiling
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-31 , DOI: 10.1016/j.autcon.2025.106010
Liang Lu, Ning Sun, Zhipeng Wang, Bin He

Robotic tiling is an efficient way to replace manual work, with tile detection and positioning serving as a pivotal technology. However, the tiling environment is characterized by its complexity. This paper introduces the instance segmentation method Mask R-CNN, which can detect tiles in non-structural environments after proper training. To address the difficulty of acquiring datasets and high annotation costs, a densely arranged tile dataset that allows for automatic labeling has been synthesized and various designed data augmentation techniques are employed. The trained model achieves a detection performance with AP75 = 98.94 % and AP95 = 88.14 % on 100 test images. Subsequently, shape reconstruction is performed to estimate 3D poses of tiles using PNP principle. Finally, a tiling system is developed and combining visual detection with laser detection method enables a successful tiling experiment. Results show that the positional error is less than 0.66 mm and the directional error is less than 0.27°, which meets industrial requirements.

中文翻译:


在非结构环境中使用掩码 R-CNN 进行瓷砖检测,用于机器人瓷砖



机器人平铺是替代手动工作的有效方法,而平铺检测和定位是一项关键技术。但是,平铺环境的特点是其复杂性。本文介绍了实例分割方法 Mask R-CNN,该方法经过适当的训练后可以检测非结构环境中的瓦片。为了解决数据集获取难度大、标注成本高等问题,综合了允许自动标注的密集瓦片数据集,并采用了各种设计的数据增强技术。经过训练的模型在 100 张测试图像上实现了 AP75 = 98.94 % 和 AP95 = 88.14 % 的检测性能。随后,使用 PNP 原理进行形状重建以估计瓷砖的 3D 姿势。最后,开发了一种平铺系统,并将视觉检测与激光检测方法相结合,实现了成功的平铺实验。结果表明,位置误差小于 0.66 mm,方向误差小于 0.27°,满足工业要求。
更新日期:2025-01-31
down
wechat
bug