当前位置: X-MOL 学术Autom. Constr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial intelligence in offsite and modular construction research
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-27 , DOI: 10.1016/j.autcon.2025.105994
Sitsofe Kwame Yevu, Karen B. Blay, Kudirat Ayinla, Georgios Hadjidemetriou

The capabilities of artificial intelligence (AI) in managing complex problems are increasing in construction. Particularly for offsite and modular construction (OMC). However, the knowledge landscape of AI applications in OMC remains fragmented, hindering the understanding of current developments and critical areas for advancing AI-in-OMC. Therefore, this paper presents a comprehensive overview of AI applications in OMC using a mixed-method review approach to identify key application areas of AI-in-OMC and under-researched areas. The findings reveal that the convolutional neural network (CNN) is the most prominent AI technique adopted, followed by artificial neural network (ANN). Prominent issues regarding AI-in-OMC include productivity and site safety. Further, the findings reveal patterns of different AI techniques solving similar research problems at each stage of OMC. Research areas to improve AI-in-OMC include AI-circular economy outcomes, sound and image data integration and transfer learning.

中文翻译:


人工智能在场外和模块化建筑研究中的应用



人工智能 (AI) 在管理建筑业复杂问题的能力正在增强。特别适用于场外和模块化建筑 (OMC)。然而,OMC 中 AI 应用的知识格局仍然分散,阻碍了对当前发展和推进 AI in-OMC 的关键领域的理解。因此,本文使用混合方法审查方法全面概述了 OMC 中的 AI 应用,以确定 AI-in-OMC 的关键应用领域和研究不足的领域。研究结果表明,卷积神经网络 (CNN) 是采用的最突出的人工智能技术,其次是人工神经网络 (ANN)。有关 AI-in-OMC 的突出问题包括生产力和现场安全。此外,研究结果揭示了不同 AI 技术在 OMC 每个阶段解决类似研究问题的模式。改进 AI in-OMC 的研究领域包括 AI 循环经济成果、声音和图像数据集成以及迁移学习。
更新日期:2025-01-27
down
wechat
bug