当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Energy, environmental, and economic (3E) analysis of a dynamic ice storage system based on ice slurry for a super high-rise building in subtropical climates
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.enbuild.2025.115373
Xinyi Hu, Xiaolei Yuan, Jingyao Jiang, Yaoji Jiang, Yumin Liang, Wenqi Jia, Risto Kosonen
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.enbuild.2025.115373
Xinyi Hu, Xiaolei Yuan, Jingyao Jiang, Yaoji Jiang, Yumin Liang, Wenqi Jia, Risto Kosonen
The building sector has overtaken industry and transportation as the largest global energy consumer, with Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems accounting for the highest energy usage within buildings. Enhancing the energy efficiency of HVAC&R systems is therefore critical for achieving energy conservation and global carbon neutrality. This paper introduces an innovative dynamic ice storage system based on ice slurry designed to shift electricity demand and improve energy flexibility for consumers in subtropical climates, thereby reducing energy consumption and contributing to decarbonization. The proposed system was implemented in a high-rise office building in southern China and analyzed through energy, environmental, and economic perspective. On-site measurements demonstrate that the dynamic ice storage system is significantly more energy-efficient and has lower carbon emissions than traditional cooling systems. Specifically, the system achieved a 50 % reduction in operational energy costs, and its equivalent cooling coefficient of performance (COP) reached 9.07, nearly double that of standard cooling systems. Life cycle assessments indicate that the system could reduce equivalent CO2 emissions by 127 600 tCO2 e, and carbon emissions by approximately 37 000 tons, equivalent to planting 75 421 trees over 20 years.
中文翻译:
亚热带气候下基于冰浆的超高层建筑动态储冰系统的能源、环境和经济 (3E) 分析
建筑行业已超过工业和交通运输业,成为全球最大的能源消耗者,其中供暖、通风、空调和制冷 (HVAC&R) 系统在建筑物内的能源使用量最高。因此,提高 HVAC&R 系统的能源效率对于实现节能和全球碳中和至关重要。本文介绍了一种基于冰浆的创新动态储冰系统,旨在改变亚热带气候下消费者的电力需求并提高能源灵活性,从而减少能源消耗并促进脱碳。拟议的系统在华南地区的一栋高层办公楼中实施,并从能源、环境和经济角度进行了分析。现场测量表明,与传统冷却系统相比,动态冰蓄冰系统明显更节能,碳排放量更低。具体来说,该系统的运行能源成本降低了 50%,其等效冷却性能系数 (COP) 达到 9.07,几乎是标准冷却系统的两倍。生命周期评估表明,该系统可以减少 127 600 吨二氧化碳当量的二氧化碳排放量和约 37 000 吨的碳排放量,相当于在 20 年内种植 75 421 棵树。
更新日期:2025-01-25
中文翻译:

亚热带气候下基于冰浆的超高层建筑动态储冰系统的能源、环境和经济 (3E) 分析
建筑行业已超过工业和交通运输业,成为全球最大的能源消耗者,其中供暖、通风、空调和制冷 (HVAC&R) 系统在建筑物内的能源使用量最高。因此,提高 HVAC&R 系统的能源效率对于实现节能和全球碳中和至关重要。本文介绍了一种基于冰浆的创新动态储冰系统,旨在改变亚热带气候下消费者的电力需求并提高能源灵活性,从而减少能源消耗并促进脱碳。拟议的系统在华南地区的一栋高层办公楼中实施,并从能源、环境和经济角度进行了分析。现场测量表明,与传统冷却系统相比,动态冰蓄冰系统明显更节能,碳排放量更低。具体来说,该系统的运行能源成本降低了 50%,其等效冷却性能系数 (COP) 达到 9.07,几乎是标准冷却系统的两倍。生命周期评估表明,该系统可以减少 127 600 吨二氧化碳当量的二氧化碳排放量和约 37 000 吨的碳排放量,相当于在 20 年内种植 75 421 棵树。