当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Uncertainty in building airtightness tests: Comparison of regression techniques using a comprehensive dataset of 6,000 tests
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-01-18 , DOI: 10.1016/j.enbuild.2025.115328
Benedikt Kölsch, Valérie Leprince, Joachim Zeller, Iain S. Walker
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-01-18 , DOI: 10.1016/j.enbuild.2025.115328
Benedikt Kölsch, Valérie Leprince, Joachim Zeller, Iain S. Walker
Building airtightness is important for enhancing energy efficiency and indoor air quality. Consequently, many regulations now mandate specific airtightness levels for new constructions, necessitating accurate measurements to ensure compliance. The conventional Ordinary Least Squares (OLS) regression, recommended by ISO 9972, is inaccurate, particularly under varying environmental conditions.
中文翻译:
构建气密性测试的不确定性:使用 6,000 个测试的综合数据集的回归技术比较
建筑气密性对于提高能源效率和室内空气质量非常重要。因此,许多法规现在都规定了新建筑的特定气密性水平,因此需要进行准确测量以确保合规性。ISO 9972 推荐的常规普通最小二乘法 (OLS) 回归不准确,尤其是在不同的环境条件下。
更新日期:2025-01-18
中文翻译:

构建气密性测试的不确定性:使用 6,000 个测试的综合数据集的回归技术比较
建筑气密性对于提高能源效率和室内空气质量非常重要。因此,许多法规现在都规定了新建筑的特定气密性水平,因此需要进行准确测量以确保合规性。ISO 9972 推荐的常规普通最小二乘法 (OLS) 回归不准确,尤其是在不同的环境条件下。