当前位置:
X-MOL 学术
›
Comput. Aided Civ. Infrastruct. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vehicle wheel load positioning method based on multiple projective planes
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2025-01-28 , DOI: 10.1111/mice.13432
Kai Sun, Xu Jiang, Xuhong Qiang
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2025-01-28 , DOI: 10.1111/mice.13432
Kai Sun, Xu Jiang, Xuhong Qiang
Computer vision‐based vehicle load monitoring methods could obtain spatiotemporal data of vehicle loads, which is important for bridge monitoring and operation. However, during the process of vehicle detection and tracking, current research usually focuses on the vehicle as a whole, and there is a lack of research on the accurate positioning of vehicle wheel loads. For the fatigue analysis of orthotropic steel deck, stress at the structural details belongs to the typical third‐class system, and related research requires accurate wheel load position. Based on the principle of camera imaging, this study proposes an innovative vehicle wheel load location method based on vehicle license plate detection and multiple projective planes, and the accurate positioning of the vehicle center is achieved by the projective relationship matrix of different planes. Then, accurate measurement of the lateral wheelbase is achieved through secondary detection and projective transformation. Further, accurate wheel load tracking for fatigue research is achieved by the multi‐objective tracking algorithm. Based on theoretical analysis and practical application results, the effectiveness and accuracy of this method have been verified. Different from traditional positioning methods based on vehicle detection boxes and 3D reconstruction boxes, the proposed method has higher accuracy and will play a fundamental role in the use of vehicle load spatiotemporal data for more accurate analysis such as fatigue research.
中文翻译:
基于多投影面的车辆车轮载荷定位方法
基于计算机视觉的车辆载荷监测方法可以获取车辆载荷的时空数据,这对于桥梁监测和运营具有重要意义。然而,在车辆检测和跟踪过程中,目前的研究通常集中在车辆整体上,缺乏对车辆车轮载荷准确定位的研究。对于正交各向异性钢桥面的疲劳分析,结构细节处的应力属于典型的三级系统,相关研究需要精确的车轮载荷位置。该文基于相机成像原理,提出了一种基于车辆车牌检测和多个投影平面的创新车辆车轮载荷定位方法,通过不同平面的投影关系矩阵实现车辆中心的精确定位。然后,通过二次检测和投影变换实现横向轴距的精确测量;此外,通过多目标跟踪算法实现了用于疲劳研究的精确车轮载荷跟踪。基于理论分析和实际应用结果,验证了该方法的有效性和准确性。与传统的基于车辆检测框和三维重建框的定位方法不同,该方法具有更高的精度,将在利用车辆载荷时空数据进行更准确的分析(如疲劳研究)中发挥基础性作用。
更新日期:2025-01-28
中文翻译:

基于多投影面的车辆车轮载荷定位方法
基于计算机视觉的车辆载荷监测方法可以获取车辆载荷的时空数据,这对于桥梁监测和运营具有重要意义。然而,在车辆检测和跟踪过程中,目前的研究通常集中在车辆整体上,缺乏对车辆车轮载荷准确定位的研究。对于正交各向异性钢桥面的疲劳分析,结构细节处的应力属于典型的三级系统,相关研究需要精确的车轮载荷位置。该文基于相机成像原理,提出了一种基于车辆车牌检测和多个投影平面的创新车辆车轮载荷定位方法,通过不同平面的投影关系矩阵实现车辆中心的精确定位。然后,通过二次检测和投影变换实现横向轴距的精确测量;此外,通过多目标跟踪算法实现了用于疲劳研究的精确车轮载荷跟踪。基于理论分析和实际应用结果,验证了该方法的有效性和准确性。与传统的基于车辆检测框和三维重建框的定位方法不同,该方法具有更高的精度,将在利用车辆载荷时空数据进行更准确的分析(如疲劳研究)中发挥基础性作用。