当前位置: X-MOL 学术Veh. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel cylindrical filtering-based greedy perimeter stateless routing scheme in flying ad hoc networks
Vehicular Communications ( IF 5.8 ) Pub Date : 2025-01-20 , DOI: 10.1016/j.vehcom.2025.100879
Amir Masoud Rahmani, Amir Haider, Khursheed Aurangzeb, May Altulyan, Entesar Gemeay, Mohammad Sadegh Yousefpoor, Efat Yousefpoor, Parisa Khoshvaght, Mehdi Hosseinzadeh

Flying ad hoc networks (FANETs) are a new example of ad hoc networks, which arrange unmanned aerial vehicles (UAVs) in an ad hoc form. The features of these networks, such as the movement of UAVs in a 3D space, high speed of UAVs, dynamic topology, limited resources, and low density, have created vital challenges for communication reliability, especially when designing routing methods in FANETs. In this paper, a novel cylindrical filtering-based greedy perimeter stateless routing scheme (CF-GPSR) is suggested in FANETs. In CF-GPSR, cylindrical filtering reduces the size of the initial candidate set to accelerate the selection of the next-hop node. In this phase, the formulation of the cylindrical filtering construction process is expressed in the cylindrical coordinate system because the filtered area is a cylinder enclosed within the communication range of flying nodes. The cylindrical filtering construction process includes three steps, namely transferring coordinate axes, rotating coordinate axes, and cylinder construction. When selecting the next-hop node, CF-GPSR first uses this cylindrical filtering to limit the candidate set of each flying node. Then, CF-GPSR decides on the best next-hop UAV based on a merit function, which includes four criteria, namely velocity factor, ideal distance, residual energy, and movement angle, and selects a candidate node with the highest merit value as the next-hop UAV. Finally, the simulation process is performed using the NS 3.23 simulator, and four simulation scenarios are defined based on the number of UAVs, the communication area of nodes, network connections, and the size of packets to evaluate CF-GPSR. In the simulation process, CF-GPSR is compared with the three GPSR-based routing schemes, namely UF-GPSR, GPSR-PPU, and GPSR in terms of delay, data delivery ratio, data loss ratio, and throughput. In the first scenario, namely the change in the number of flying nodes, CF-GPSR improves delay, PDR, PLR, and throughput by 17.34%, 4.83%, 16%, and 7.05%, respectively. Also, in the second scenario, namely the change in communication range, the proposed method optimizes delay, PDR, PLR, and throughput by 4.91%, 5.71%, 6.12%, and 8.45%, respectively. In the third scenario, namely the change in the number of connections, CF-GPSR improves EED, PDR, PLR, and throughput by 18.41%, 9.09%, 9.52%, and 7.03%, respectively. In the fourth simulation scenario, namely the change in the packet size, CF-GPSR improves delay, PDR, PLR, and throughput by 14.81%, 19.39%, 7.19%, and 0.39%, respectively.

中文翻译:


一种新型的基于圆柱形过滤的贪婪边界无状态路由方案



飞行自组网 (FANET) 是自组网的一个新示例,它以自组网的形式安排无人机 (UAV)。这些网络的特点,如无人机在 3D 空间中的移动、无人机的高速、动态拓扑、有限的资源和低密度,给通信可靠性带来了重大挑战,尤其是在 FANET 中设计路由方法时。在本文中,在 FANET 中提出了一种新颖的基于圆柱形过滤的贪婪边界无状态路由方案 (CF-GPSR)。在 CF-GPSR 中,圆柱形过滤会减小初始候选集的大小,以加快下一跃点节点的选择。在这个阶段,圆柱形滤波构造过程的公式用圆柱坐标系来表示,因为滤波区域是一个封闭在飞行节点通信范围内的圆柱体。圆柱形过滤构建过程包括三个步骤,即传递坐标轴、旋转坐标轴和圆柱体构建。在选择下一跃点节点时,CF-GPSR 首先使用此圆柱形过滤来限制每个飞行节点的候选集。然后,CF-GPSR 根据评价函数确定最佳下一跳无人机,该评价函数包括速度因子、理想距离、残余能量和运动角度 4 个标准,并选择评价值最高的候选节点作为下一跳无人机。最后,使用 NS 3.23 模拟器进行仿真过程,并根据无人机数量、节点通信区域、网络连接和数据包大小定义四个仿真场景,以评估 CF-GPSR。 在仿真过程中,CF-GPSR 与三种基于 GPSR 的路由方案(即 UF-GPSR、GPSR-PPU 和 GPSR)在延迟、数据传输率、数据丢失率和吞吐量方面进行了比较。在第一种情况下,即飞行节点数量的变化,CF-GPSR 将延迟、PDR、PLR 和吞吐量分别提高了 17.34%、4.83%、16% 和 7.05%。此外,在第二种情况下,即通信范围的变化,所提出的方法将延迟、PDR、PLR 和吞吐量分别优化了 4.91%、5.71%、6.12% 和 8.45%。在第三种场景下,即连接数的变化,CF-GPSR 将 EED 、 PDR 、 PLR 和吞吐量分别提高了 18.41% 、 9.09% 、 9.52% 和 7.03% 。在第四个模拟场景中,即数据包大小的变化,CF-GPSR 将延迟、PDR、PLR 和吞吐量分别提高了 14.81%、19.39%、7.19% 和 0.39%。
更新日期:2025-01-20
down
wechat
bug