当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrogen production by suspension self-rotation enhanced pyrolysis of sludge particles in cyclone
Water Research ( IF 11.4 ) Pub Date : 2025-01-27 , DOI: 10.1016/j.watres.2025.123198
Zhiqin Jiang, Yanan Liang, Shu Zhu, Kai Zheng, Yingjie Zhu, Danhui Yang, Hualin Wang, Pengbo Fu
Water Research ( IF 11.4 ) Pub Date : 2025-01-27 , DOI: 10.1016/j.watres.2025.123198
Zhiqin Jiang, Yanan Liang, Shu Zhu, Kai Zheng, Yingjie Zhu, Danhui Yang, Hualin Wang, Pengbo Fu
The challenges faced by sludge pyrolysis units, including poor heat transfer efficiency and uneven heating of material groups, significantly hinder the green and low-carbon transformation and sustainable development of sludge treatment. The suspension self-rotation of sludge particles in a cyclone enhances particle heat transfer, thereby improving the pyrolysis process. In this study, we developed a novel method for sludge pyrolysis using Cyclone Suspension Self-Rotation Pyrolysis Reactor (CSSPR). Through numerical simulation and high-speed camera visualization, we analyzed the effects of cyclone cone angle, particle size, and inlet flow rate on particle suspension self-rotation. A systematic investigation was conducted into the mechanisms by which “particle suspension self-rotation” enhances “sludge particle pyrolysis”. Consequently, an effective method for utilizing hydrogen-rich gas produced by sludge suspension self-rotation pyrolysis was developed. The results showed that CSSPR with a 9° cone angle achieved optimal suspension autorotation efficiency. Under optimal conditions—sludge particle moisture content of 31.89% and particle suspension rotation rate of 100%, the hydrogen production per unit of sludge reached up to 265.78 mL/g, which is 1.3 times higher than that produced in a static state. Compared to traditional fixed-bed pyrolysis technology, CSSPR demonstrated superior pyrolysis performance, achieving a 155.78 mL/g higher hydrogen yield per unit of sludge. This study offers a novel approach to developing sludge resource pyrolysis technology, thereby providing an effective pathway for addressing climate change and advancing environmental governance.
中文翻译:
悬浮液自旋增强旋流器中污泥颗粒热解制氢
污泥热解装置面临的挑战,包括传热效率差、物料组升温不均匀等,严重阻碍了污泥处理的绿色低碳转型和可持续发展。旋风分离器中污泥颗粒的悬浮液自旋转增强了颗粒的传热,从而改善了热解过程。在这项研究中,我们开发了一种使用旋风悬浮自旋热解反应器 (CSSPR) 的污泥热解新方法。通过数值模拟和高速相机可视化,我们分析了旋风锥角、粒径和入口流速对颗粒悬浮液自旋转的影响。对“颗粒悬浮自旋”促进“污泥颗粒热解”的机制进行了系统研究。因此,开发了一种利用污泥悬浮液自旋转热解产生的富氢气体的有效方法。结果表明,9° 锥角的 CSSPR 实现了最佳的悬架自转效率。在污泥颗粒含水率为 31.89%、颗粒悬浮旋转率为 100% 的最佳条件下,单位污泥产氢高达 265.78 mL/g,是静态产氢的 1.3 倍。与传统的固定床热解技术相比,CSSPR 表现出卓越的热解性能,每单位污泥的氢气产率提高了 155.78 mL/g。本研究为开发污泥资源热解技术提供了一种新方法,从而为应对气候变化和推进环境治理提供了有效的途径。
更新日期:2025-01-28
中文翻译:
悬浮液自旋增强旋流器中污泥颗粒热解制氢
污泥热解装置面临的挑战,包括传热效率差、物料组升温不均匀等,严重阻碍了污泥处理的绿色低碳转型和可持续发展。旋风分离器中污泥颗粒的悬浮液自旋转增强了颗粒的传热,从而改善了热解过程。在这项研究中,我们开发了一种使用旋风悬浮自旋热解反应器 (CSSPR) 的污泥热解新方法。通过数值模拟和高速相机可视化,我们分析了旋风锥角、粒径和入口流速对颗粒悬浮液自旋转的影响。对“颗粒悬浮自旋”促进“污泥颗粒热解”的机制进行了系统研究。因此,开发了一种利用污泥悬浮液自旋转热解产生的富氢气体的有效方法。结果表明,9° 锥角的 CSSPR 实现了最佳的悬架自转效率。在污泥颗粒含水率为 31.89%、颗粒悬浮旋转率为 100% 的最佳条件下,单位污泥产氢高达 265.78 mL/g,是静态产氢的 1.3 倍。与传统的固定床热解技术相比,CSSPR 表现出卓越的热解性能,每单位污泥的氢气产率提高了 155.78 mL/g。本研究为开发污泥资源热解技术提供了一种新方法,从而为应对气候变化和推进环境治理提供了有效的途径。