当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights into the start-up of acidic nitritation using conventional activated sludge: Process dynamics, nitrifiers succession, and pilot-scale demonstration
Water Research ( IF 11.4 ) Pub Date : 2025-01-26 , DOI: 10.1016/j.watres.2025.123208
Zheng Kong, Zhiyao Wang, Zhetai Hu, Yunqian Song, Dongdong Xu, Guanbin Li, Jason Dwyer, Shihu Hu
Water Research ( IF 11.4 ) Pub Date : 2025-01-26 , DOI: 10.1016/j.watres.2025.123208
Zheng Kong, Zhiyao Wang, Zhetai Hu, Yunqian Song, Dongdong Xu, Guanbin Li, Jason Dwyer, Shihu Hu
Acidic nitritation driven by acid-tolerant ammonia-oxidizing bacteria (AOB) has gained wide attention due to its potential in sustainable wastewater and sludge treatment. However, limited knowledge of initiating acidic nitration using conventional activated sludge hindered the wider studies and application of this technology at lab- and field-scale. This study evaluates three strategies for initiating acidic nitritation: a constant low hydraulic retention time (HRT); an extended initial HRT followed by manual HRT reduction; and pH-controlled HRT. All strategies successfully started acidic nitritation using seed sludge from a local wastewater treatment plant (WWTP) containing undetectable acid-tolerant AOB. Among the three strategies, pH-controlled HRT was the most efficient, with a smoother (minimal fluctuations) and faster (within 30 days) start-up process than the other two strategies. This was attributed to an initial redundancy in ammonia oxidation capacity (i.e. making the proton generation rate caused by ammonium oxidation exceed the alkalinity supply rate by influent), allowing AOB to overcome the activity valley during the transition from neutral to acid pH Level. Using pH as a real-time proxy of AOB activity also leveraged the unique low buffer capacity at acidic pH. Based on these findings, a pilot-scale acidic nitritation reactor treating diluted sidestream wastewater was initiated for the first time using the pH-controlled strategy. The pilot reactor immediately achieved nitrite accumulation and reached the target hydraulic loading rate quicker than the lab reactor, indicating higher influent nitrogen concentration may facilitate NOB suppression and a higher growth rate of acid-tolerant AOB. Based on those results, the versatile start-up strategies using both mainstream or sidestream wastewater were further discussed. Overall, this work greatly expands potential applications of acidic nitritation and paves the way for future field-scale applications.
中文翻译:
深入了解使用传统活性污泥进行酸性硝化的启动:工艺动力学、硝化剂继任和中试规模示范
由耐酸氨氧化菌 (AOB) 驱动的酸性硝化因其在可持续废水和污泥处理中的潜力而受到广泛关注。然而,使用传统活性污泥开始酸性硝化的知识有限,阻碍了该技术在实验室和现场规模的更广泛研究和应用。本研究评估了启动酸性硝化的三种策略:恒定的低水力保留时间 (HRT);延长初始 HRT 后手动减少 HRT;和 pH 控制的 HRT。所有策略都使用来自当地污水处理厂 (WWTP) 的种子污泥成功开始酸性硝化,该种子污泥含有无法检测的耐酸 AOB。在这三种策略中,pH 控制 HRT 效率最高,与其他两种策略相比,启动过程更平稳(波动最小)和更快(30 天内)。这归因于氨氧化能力的初始冗余(即使铵态氮氧化引起的质子生成速率超过进水的碱度供应速率),使 AOB 能够在从中性 pH 值过渡到酸性 pH 值期间克服活性谷。使用 pH 值作为 AOB 活性的实时代理还利用了酸性 pH 值下独特的低缓冲容量。基于这些发现,首次使用 pH 控制策略启动了处理稀释侧流废水的中试规模酸性硝化反应器。中试反应器立即实现亚硝酸盐积累,比实验室反应器更快地达到目标水力负载速率,表明较高的进水氮浓度可能有利于 NOB 抑制和耐酸 AOB 的更高生长速率。 基于这些结果,进一步讨论了使用主流或侧流废水的多功能启动策略。总的来说,这项工作极大地扩展了酸性硝化的潜在应用,并为未来的现场规模应用铺平了道路。
更新日期:2025-01-27
中文翻译:
深入了解使用传统活性污泥进行酸性硝化的启动:工艺动力学、硝化剂继任和中试规模示范
由耐酸氨氧化菌 (AOB) 驱动的酸性硝化因其在可持续废水和污泥处理中的潜力而受到广泛关注。然而,使用传统活性污泥开始酸性硝化的知识有限,阻碍了该技术在实验室和现场规模的更广泛研究和应用。本研究评估了启动酸性硝化的三种策略:恒定的低水力保留时间 (HRT);延长初始 HRT 后手动减少 HRT;和 pH 控制的 HRT。所有策略都使用来自当地污水处理厂 (WWTP) 的种子污泥成功开始酸性硝化,该种子污泥含有无法检测的耐酸 AOB。在这三种策略中,pH 控制 HRT 效率最高,与其他两种策略相比,启动过程更平稳(波动最小)和更快(30 天内)。这归因于氨氧化能力的初始冗余(即使铵态氮氧化引起的质子生成速率超过进水的碱度供应速率),使 AOB 能够在从中性 pH 值过渡到酸性 pH 值期间克服活性谷。使用 pH 值作为 AOB 活性的实时代理还利用了酸性 pH 值下独特的低缓冲容量。基于这些发现,首次使用 pH 控制策略启动了处理稀释侧流废水的中试规模酸性硝化反应器。中试反应器立即实现亚硝酸盐积累,比实验室反应器更快地达到目标水力负载速率,表明较高的进水氮浓度可能有利于 NOB 抑制和耐酸 AOB 的更高生长速率。 基于这些结果,进一步讨论了使用主流或侧流废水的多功能启动策略。总的来说,这项工作极大地扩展了酸性硝化的潜在应用,并为未来的现场规模应用铺平了道路。