当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic effects of quaternary ammonium compounds and antibiotics on the evolution of antibiotic resistance
Water Research ( IF 11.4 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.watres.2025.123206
Peiliang Wang, Hanqing Wang, Shengchun Qi, Wei Wang, Huijie Lu
Water Research ( IF 11.4 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.watres.2025.123206
Peiliang Wang, Hanqing Wang, Shengchun Qi, Wei Wang, Huijie Lu
The usage of quaternary ammonium compounds (QACs) as disinfectants has surged dramatically during the COVID-19 pandemic and thereafter. QACs can promote antimicrobial resistance, but the combined effects of QACs and antibiotics in driving resistance evolution were yet revealed. This study aimed to evaluate antibiotic resistance of wastewater microorganisms under coexposure to typical antibiotics and the most widely used QAC, dodecyl dimethyl benzyl ammonium chloride (DDBAC). DDBAC exhibited synergistic effects with multiple antibiotics (ampicillin, azithromycin, ciprofloxacin, kanamycin, polymyxin B) in enhancing activated sludge resistance by 1.53–6.67 folds, compared with antibiotics exposure alone. DDBAC-ampicillin coexposure enriched multidrug and aminoglycoside ARGs with relatively high horizontal gene transfer potential. The synergistic mechanism was further explored using sludge-isolated pathogenic E. coli. DDBAC at 1–10 mg/L alone did not induce notable resistance, but synergized with ampicillin on enhancing resistance by 6.56–22.90 folds. Based on mutation analysis and transcriptomics, DDBAC-enhanced resistance evolution was attributable to efflux pump upregulation, target modification, and inhibition of ATP synthesis (a less reported mechanism). Five DDBAC-induced, resistance-conferring mutant genes were highly enriched in globally collected E. coli strains from wastewater outflow (n = 537) than soil/sediments (n = 714, p < 0.05). Considering the strong adsorption and persistence of QACs, their coexistence with antibiotics poses elevated antimicrobial resistance risks, particularly in wastewater treatment systems with long solid retention time and sewage sludge applied farmland.
中文翻译:
季铵化合物和抗生素对抗生素耐药性演变的协同作用
在 COVID-19 大流行期间及之后,季铵化合物 (QAC) 作为消毒剂的使用急剧激增。QAC 可以促进抗菌素耐药性,但 QAC 和抗生素在驱动耐药性进化方面的联合作用尚未揭示。本研究旨在评估废水微生物在共同暴露于典型抗生素和最广泛使用的 QAC 十二烷基二甲基苄基氯化铵 (DDBAC) 下的抗生素耐药性。与单独接触抗生素相比,DDBAC 与多种抗生素(氨苄青霉素、阿奇霉素、环丙沙星、卡那霉素、多粘菌素 B)表现出协同作用,将活性污泥耐药性提高 1.53-6.67 倍。富含 DDBAC-氨苄青霉素共暴露的多药和氨基糖苷类 ARGs,具有相对较高的水平基因转移潜力。使用污泥分离的致病性大肠杆菌进一步探索了协同机制。单独使用 1-10 mg/L 的 DDBAC 不会引起明显的耐药性,但与氨苄青霉素协同作用,可将耐药性提高 6.56-22.90 倍。基于突变分析和转录组学,DDBAC 增强的耐药性进化归因于外排泵上调、靶标修饰和 ATP 合成抑制 (一种较少报道的机制)。5 个 DDBAC 诱导的、赋予抗性的突变基因在全球收集的废水流出的大肠杆菌菌株 (n = 537) 中比土壤/沉积物 (n = 714,p < 0.05) 中高度富集。考虑到 QACs 的强吸附性和持久性,它们与抗生素共存会带来更高的抗菌素耐药性风险,尤其是在固体停留时间较长的废水处理系统和污水污泥应用的农田中。
更新日期:2025-01-28
中文翻译:
季铵化合物和抗生素对抗生素耐药性演变的协同作用
在 COVID-19 大流行期间及之后,季铵化合物 (QAC) 作为消毒剂的使用急剧激增。QAC 可以促进抗菌素耐药性,但 QAC 和抗生素在驱动耐药性进化方面的联合作用尚未揭示。本研究旨在评估废水微生物在共同暴露于典型抗生素和最广泛使用的 QAC 十二烷基二甲基苄基氯化铵 (DDBAC) 下的抗生素耐药性。与单独接触抗生素相比,DDBAC 与多种抗生素(氨苄青霉素、阿奇霉素、环丙沙星、卡那霉素、多粘菌素 B)表现出协同作用,将活性污泥耐药性提高 1.53-6.67 倍。富含 DDBAC-氨苄青霉素共暴露的多药和氨基糖苷类 ARGs,具有相对较高的水平基因转移潜力。使用污泥分离的致病性大肠杆菌进一步探索了协同机制。单独使用 1-10 mg/L 的 DDBAC 不会引起明显的耐药性,但与氨苄青霉素协同作用,可将耐药性提高 6.56-22.90 倍。基于突变分析和转录组学,DDBAC 增强的耐药性进化归因于外排泵上调、靶标修饰和 ATP 合成抑制 (一种较少报道的机制)。5 个 DDBAC 诱导的、赋予抗性的突变基因在全球收集的废水流出的大肠杆菌菌株 (n = 537) 中比土壤/沉积物 (n = 714,p < 0.05) 中高度富集。考虑到 QACs 的强吸附性和持久性,它们与抗生素共存会带来更高的抗菌素耐药性风险,尤其是在固体停留时间较长的废水处理系统和污水污泥应用的农田中。