当前位置:
X-MOL 学术
›
Cement Concrete Comp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unveiling the synergistic effects of stray current and high hydraulic pressure on chloride transport in ultra-high-performance concrete
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.cemconcomp.2025.105957
Mingyue Chen, Xin Kang, Yongqing Chen, Renpeng Chen
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2025-01-25 , DOI: 10.1016/j.cemconcomp.2025.105957
Mingyue Chen, Xin Kang, Yongqing Chen, Renpeng Chen
Ultra-high-performance concrete (UHPC) is a promising material for constructing future deep underground spaces owing to its exceptional toughness and durability. Nevertheless, the potential impact of stray currents and high hydraulic pressure on the durability of UHPC in deep underground electric projects (such as subways and electric railways) remains elusive. Moreover, existing experimental setups are inadequately equipped to simulate these extreme conditions. To address this challenge, we developed a novel designed ultra-deep underground corrosion simulation system to study the synergistic effects of high hydraulic pressure and stray currents on the chloride ion transport in UHPC. The results indicate that stray currents cause the corrosion of steel fibers, which in turn elevates the porosity of UHPC(rising from 1.45 % to 2.96 %). This porosity increase enhances the hydraulic conductivity of UHPC, intensifying the impact of high hydraulic pressure on chloride ion transport. The extreme gradient boosting (XGBoost)model revealed that stray current is the dominant factor affecting chloride ion transport, contributing to approximately 83 % of the impact. Numerical simulations demonstrated that the omission of steel fiber corrosion leads to an underestimation of chloride ion transport speed. Finally, a time-dependent model for the effective diffusion coefficient of chloride ions was developed. Based on the measured data, it was found that accounting for the coupled effects of high hydraulic pressure and stray currents increases the cover layer thickness from 17 mm to 57 mm. This study provides valuable guidance for the durability of deep underground UHPC structures.
中文翻译:
揭示杂散电流和高液压对超高性能混凝土中氯化物输送的协同效应
超高性能混凝土 (UHPC) 因其卓越的韧性和耐用性而成为建造未来深地下空间的有前途的材料。然而,杂散电流和高液压对深部地下电气项目(如地铁和电气化铁路)中 UHPC 耐用性的潜在影响仍然难以捉摸。此外,现有的实验装置不足以模拟这些极端条件。为了应对这一挑战,我们开发了一种设计新颖的超深部地下腐蚀模拟系统,以研究高液压和杂散电流对 UHPC 中氯离子传输的协同效应。结果表明,杂散电流会引起钢纤维的腐蚀,进而提高 UHPC 的孔隙率(从 1.45 % 上升到 2.96 %)。这种孔隙率的增加增强了 UHPC 的导水率,加剧了高液压对氯离子传输的影响。极端梯度提升 (XGBoost) 模型显示,杂散电流是影响氯离子传输的主要因素,约占影响的 83%。数值模拟表明,忽略钢纤维腐蚀会导致低估氯离子传输速度。最后,开发了氯离子有效扩散系数的瞬态模型。根据测量数据,发现考虑到高液压和杂散电流的耦合效应,覆盖层厚度从 17 mm 增加到 57 mm。本研究为深部地下 UHPC 结构的耐久性提供了有价值的指导。
更新日期:2025-01-25
中文翻译:
揭示杂散电流和高液压对超高性能混凝土中氯化物输送的协同效应
超高性能混凝土 (UHPC) 因其卓越的韧性和耐用性而成为建造未来深地下空间的有前途的材料。然而,杂散电流和高液压对深部地下电气项目(如地铁和电气化铁路)中 UHPC 耐用性的潜在影响仍然难以捉摸。此外,现有的实验装置不足以模拟这些极端条件。为了应对这一挑战,我们开发了一种设计新颖的超深部地下腐蚀模拟系统,以研究高液压和杂散电流对 UHPC 中氯离子传输的协同效应。结果表明,杂散电流会引起钢纤维的腐蚀,进而提高 UHPC 的孔隙率(从 1.45 % 上升到 2.96 %)。这种孔隙率的增加增强了 UHPC 的导水率,加剧了高液压对氯离子传输的影响。极端梯度提升 (XGBoost) 模型显示,杂散电流是影响氯离子传输的主要因素,约占影响的 83%。数值模拟表明,忽略钢纤维腐蚀会导致低估氯离子传输速度。最后,开发了氯离子有效扩散系数的瞬态模型。根据测量数据,发现考虑到高液压和杂散电流的耦合效应,覆盖层厚度从 17 mm 增加到 57 mm。本研究为深部地下 UHPC 结构的耐久性提供了有价值的指导。