当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Demonstrating performance in scaled-up production and quality control of polyhydroxyalkanoates using municipal waste activated sludge
Water Research ( IF 11.4 ) Pub Date : 2025-01-23 , DOI: 10.1016/j.watres.2025.123160
Ruizhe Pei, Erik de Vries, Angel Estévez, João Sousa, Henk Dijkman, Jelmer Tamis, Alan Werker
Water Research ( IF 11.4 ) Pub Date : 2025-01-23 , DOI: 10.1016/j.watres.2025.123160
Ruizhe Pei, Erik de Vries, Angel Estévez, João Sousa, Henk Dijkman, Jelmer Tamis, Alan Werker
Significant progress has been made over the past decade with pilot scale polyhydroxyalkanoate (PHA) production by direct accumulation using municipal waste activated sludge (WAS). However, industrial upscaling experiences are still lacking in the research literature. In this study, a demonstration scale (4 m) PHA production process was operated using industrially relevant equipment and compared favourably to those from parallel pilot scale (200 L) production runs. WAS grab samples from a Dutch full scale municipal wastewater treatment plant (WWTP) was used as the biomass source. Final biomass PHA contents and production yields, that are critical for technology viability, were statistically the same between the experiments conducted at pilot scale (0.41 ± 0.02 gPHA/gVSS and 0.42 ± 0.02 gCOD/gCOD) and demonstration scale (0.45 ± 0.05 gPHA/gVSS and 0.39 ± 0.07 gCOD/gCOD). The results furthermore aligned with previous 1 m piloting experiences and five year old historical data that similarly used WAS sourced from the same WWTP. Scalability for the technology and a robustness of the applied PHA production methods using WAS were demonstrated. Temperature and foaming control were identified to be critical to upscaled process engineering and design towards successful industrial implementations. The results of the present study, combined with previously produced PHAs and those historical data, support that feedstock quality predictably determines both the average PHA co-monomer content, as well as the blend distribution. PHA solvent extraction from WAS is inherently a blending process. Extraction homogeneously mixes polymer contributions from collectively stored granules from all species of microorganisms in the biomass. Dried PHA-rich biomass batches can be stockpiled and batches can be blended in extraction processes for both recovery and formulation to reach consistent polymer qualities across production batches. More centralized extraction facilities are therefore anticipated to offer economic benefits due to scale and greater opportunities for product quality specification and control. Research findings are presented herein of the production scale comparative study along with practical perspectives of technological readiness for realizing WAS based industrial scale PHA production, quality control, and the supply chains that will be necessary for successful commercial implementation.
中文翻译:
展示使用城市废弃活性污泥进行聚羟基脂肪酸酯的规模化生产和质量控制的性能
在过去十年中,通过使用城市垃圾活性污泥 (WAS) 直接积累生产中试规模的聚羟基脂肪酸酯 (PHA) 取得了重大进展。然而,研究文献中仍然缺乏工业升级的经验。在本研究中,使用工业相关设备操作示范规模 (4 m ) PHA 生产过程,并与平行中试规模 (200 L) 生产运行的过程进行了比较。使用来自荷兰全尺寸城市污水处理厂 (WWTP) 的 WAS 抓样作为生物质源。在中试规模(0.41 ± 0.02 gPHA/gVSS 和 0.42 ± 0.02 gCOD/gCOD)和示范规模(0.45 ± 0.05 gPHA/gVSS 和 0.39 ± 0.07 gCOD/gCOD)进行的实验之间,最终生物量 PHA 含量和生产产量在统计学上相同。结果还与之前的 1 m 试点经验和五年前的历史数据一致,这些数据同样使用来自同一 WWTP 的 WAS。证明了该技术的可扩展性和使用 WAS 的应用 PHA 生产方法的稳健性。温度和发泡控制被确定为扩大工艺工程和设计规模以实现成功的工业实施至关重要。本研究的结果,结合以前生产的 PHA 和这些历史数据,支持原料质量可以预测地决定平均 PHA 共聚单体含量以及混合物分布。从 WAS 中提取 PHA 溶剂本质上是一种混合过程。萃取将生物质中所有种类微生物的集体储存颗粒中的聚合物贡献均匀混合。 富含 PHA 的干燥生物质批次可以储存,并且可以在提取过程中混合批次以进行回收和配制,从而在生产批次中达到一致的聚合物质量。因此,由于规模和产品质量规范和控制的更大机会,预计更集中的提取设施将提供经济利益。本文介绍了生产规模比较研究的研究结果,以及实现基于 WAS 的工业规模 PHA 生产、质量控制和成功商业实施所需的供应链的技术准备情况的实际观点。
更新日期:2025-01-23
中文翻译:
展示使用城市废弃活性污泥进行聚羟基脂肪酸酯的规模化生产和质量控制的性能
在过去十年中,通过使用城市垃圾活性污泥 (WAS) 直接积累生产中试规模的聚羟基脂肪酸酯 (PHA) 取得了重大进展。然而,研究文献中仍然缺乏工业升级的经验。在本研究中,使用工业相关设备操作示范规模 (4 m ) PHA 生产过程,并与平行中试规模 (200 L) 生产运行的过程进行了比较。使用来自荷兰全尺寸城市污水处理厂 (WWTP) 的 WAS 抓样作为生物质源。在中试规模(0.41 ± 0.02 gPHA/gVSS 和 0.42 ± 0.02 gCOD/gCOD)和示范规模(0.45 ± 0.05 gPHA/gVSS 和 0.39 ± 0.07 gCOD/gCOD)进行的实验之间,最终生物量 PHA 含量和生产产量在统计学上相同。结果还与之前的 1 m 试点经验和五年前的历史数据一致,这些数据同样使用来自同一 WWTP 的 WAS。证明了该技术的可扩展性和使用 WAS 的应用 PHA 生产方法的稳健性。温度和发泡控制被确定为扩大工艺工程和设计规模以实现成功的工业实施至关重要。本研究的结果,结合以前生产的 PHA 和这些历史数据,支持原料质量可以预测地决定平均 PHA 共聚单体含量以及混合物分布。从 WAS 中提取 PHA 溶剂本质上是一种混合过程。萃取将生物质中所有种类微生物的集体储存颗粒中的聚合物贡献均匀混合。 富含 PHA 的干燥生物质批次可以储存,并且可以在提取过程中混合批次以进行回收和配制,从而在生产批次中达到一致的聚合物质量。因此,由于规模和产品质量规范和控制的更大机会,预计更集中的提取设施将提供经济利益。本文介绍了生产规模比较研究的研究结果,以及实现基于 WAS 的工业规模 PHA 生产、质量控制和成功商业实施所需的供应链的技术准备情况的实际观点。